Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема лекции 3. Структурные особенности массивов горных пород
В литосфере выделяют два вида (или два различных порядка) структурных элементов - глубинные и коровые тектонические структуры. В пределах этих структур в зависимости от размеров выделяются различные порядки неоднородностей. Глубинными тектоническими структурами первого порядка являются континенты и океанические области коры. Глубинные структуры второго порядка - это подвижные геосинклинальные пояса и относительно устойчивые платформы. Коровые тектонические структуры, в отличие от глубинных, менее развиты на глубину и, как правило, не выходят из пределов земной коры. Они образуют складчато-разрывные деформации различных порядков, имеющие линейные размеры по простиранию максимально до десятков, иногда нескольких сотен километров. Особое значение в тектоническом строении и развитии земной коры принадлежит глубинным разломам, представляющим собой первичные элементы строения земной коры. Наиболее крупные и древние разломы проникают в глубину до подошвы земной коры и ниже, в верхнюю мантию. Сетью пересекающихся глубинных разломов земная кора расчленена на глыбы или их ещё называют литосферными плитами. Каждая литосферная плита разломами более высоких порядков - коровыми разрывами - расчленена, в свою очередь, на блоки. В целом земная кора имеет блочное строение . Глубинные разломы и разрывы земной коры являются теми естественными швами, по которым на протяжении всей геологической истории Земли непрерывно происходили тектонические движения. Тектонические структуры в земной коре более высоких - третьего и четвертого - порядков называют региональными. Именно с этими структурными неоднородностями связаны месторождения полезных ископаемых, а, следовательно, и массивы горных пород, которые являются предметом исследований. В результате расчленения поверхностями структурных неоднородностей региональных порядков массивы горных пород так же, как и земная кора в целом, имеют ярко выраженную блочную структуру. Блочное строение характерно для любых массивов пород, однако для массивов пород, сложенных относительно слабыми осадочными породами оно выражается относительно слабее, чем для массивов прочных скальных пород. Разработаны различные классификации структурных неоднородностей, одна из наиболее удачных предложена докт. физ.-мат. наук М.В. Рацем, который выделил несколько различных порядков структурных неоднородностей. К неоднородностям нулевого порядка М.В. Рац отнёс крупные тектонические разрывы, связанные с региональными полями тектонических напряжений, разбивающие массивы пород на блоки с линейными размерами свыше 10 км, это по своей сути региональные структурные неоднородности земной коры III-IV порядков. Далее выделяются структурные неоднородности, относящиеся собственно к массиву пород в масштабах отдельных месторождений. Неоднородности первого порядка обусловлены наличием в массиве различных по составу, структуре и текстуре пород, крупных геологических нарушений, тектонических разрывов и т. д. Эти неоднородности расчленяют массив на блоки размерами от сотен метров до километров. Более мелкие блоки размерами от десятков сантиметров до десятков метров связаны с неоднородностями второго порядка. К этому классу относят неоднородности структуры и состава пород в пределах одной пачки, слоя, а также естественную трещиноватость. Трещинами называют разрывы в горных породах, перемещения по которым совершенно отсутствуют или очень незначительны. По степени проявления различают следующие три группы трещин: открытые, закрытые и скрытые. Открытые трещины имеют четко видимую полость, часто заполненную вторичными и гидротермальными минералами. Закрытые трещины характеризуются столь сближенными стенками, что хотя сам разрыв по ним хорошо прослеживается, полость по разрыву незаметна. Скрытые трещины визуально не видны, так как они очень тонки, но их можно обнаружить при разбивании или дроблении горных пород. Естественные трещины обычно образуют в массиве системы или ряды. Трещины одной системы имеют параллельные или близкие к параллельным направления, но не могут пересекаться друг с другом. Часто встречаются две или три системы трещин, пересекающихся друг с другом под углами, близкими к прямым. Обычно в массиве горных пород можно выделить не менее трех систем трещиноватости. В ряде случаев число систем достигает пяти-шести и более. Детальный анализ развития трещиноватости массивов горных пород различных месторождений показывает, что по линейным размерам трещин и величинам сцепления пород на их контактах выделяются три группы трещиноватости: 1 группа – крупноблоковая трещиноватость, 2 группа – мелкоблоковая трещиноватость , 3 группа - микротрещиноватость. Последняя группа принадлежит к неоднородностям следующих, более высоких (третьего и четвертого) порядков. Трещины крупноблоковой трещиноватости имеют протяженность, исчисляемую десятками и даже сотнями метров. Протяженность отдельных трещин мелкоблоковой трещиноватости исчисляется метрами и дециметрами. Микротрещины образуют структурные блоки с сантиметровыми размерами. Различные массивы пород в разной степени расчленены трещинами. Среднее число параллельных трещин (отклонение элементов залегания ±10° от среднего по азимуту и по углу падения), приходящееся на единицу длины l (в направлении, перпендикулярном к трещинам), часто называют густотой или плотностью трещин. Это же число n = 1/ l называют также линейным модулем трещиноватости соответствующей системы трещин. Линейный модуль является критерием сравнительной оценки степени выраженности в массиве трещин той или иной системы. Сравнительная оценка развития общей трещиноватости различных массивов или разных участков некоторого массива может быть выражена объемным модулем трещиноватости W, представляющим собой безразмерное отношение единичного объема массива 1 м3 к среднему объему V структурного блока. Другим критерием для сравнительной оценки трещиноватости массивов горных пород может явиться акустический показатель трещиноватостиАi определяемый как отношение скоростей упругих колебаний в монолитном образце породы и в трещиноватом массиве. В зависимости от степени развития трещиноватости массивов этот показатель может принимать значения от 0, 9-1, 0 для практически монолитных нетрещиноватых пород, до 0, 0-0, 1 для весьма трещиноватых мелкоблочных пород. К неоднородностям третьего порядка, кроме микротрещиноватости, относятся также контакты между отдельными минеральными образованиями, зернами и кристаллами. При этом размеры блоков, образуемых неоднородностями данного типа, варьируют в пределах от единиц до десятков сантиметров. Наконец, поскольку горные породы в большинстве своём представляют многокомпонентные поликристаллические агрегаты, выделяют четвертый порядок неоднородностей, связанный со структурными нарушениями межкристаллических областей, а также с дефектами структуры в решетках породообразующих минералов. Размеры структурных элементов в этом случае колеблются от долей миллиметра до нескольких сантиметров. Всё изложенное позволяет говорить об общих закономерностях структуры, характерных для верхней мантии и земной коры, и проявляющихся в едином иерархически-блочном строении, которое можно проследить от планетарных структур типа континентов до микроструктур на уровне кристаллов и отдельных минеральных зёрен. Изложенное позволяет представить схему строения массива горных пород с учетом структурных неоднородностей различных порядков в виде некоторой пространственной конструкции, состоящей из плотно прилегающих друг к другу блоков с различной степенью связи между ними (рисунок 3.1). Рисунок 3.1. Структурная схема массива горных пород. a-г - деформирующиеся объекты различных линейных размеров. 1-4 - неоднородности соответственно первого - четвертого порядков. Естественно, что влияние неоднородностей различных порядков на деформирование и разрушение каких-либо конкретных объектов далеко не равнозначно. Например, неоднородности нулевого и первого порядков на устойчивость горных выработок практически не влияют, поскольку размеры структурных блоков, образуемых неоднородностями этих порядков, во много раз превосходят размеры выработок. В то же время, неоднородности второго порядка, в частности естественная трещиноватость, оказывают на устойчивость выработок весьма существенное влияние, обусловливая вывалы пород из стенок и кровли выработок. На рисунке 3.1 деформации объекта «а» определяются лишь деформационными характеристиками материала среды (т. е. с учетом неоднородностей только четвертого порядка), а объектов «б-г» - суммарным влиянием неоднородностей соответствующих порядков и материала среды. Различие показателей свойств горных пород в зависимости от абсолютных геометрических размеров участков породного массива, обусловленное проявлением влияния неоднородностей различных порядков, называют масштабным эффектом. Масштабный эффект проявляется и при испытаниях образцов пород различных размеров. Например, даже при сравнении деформационных характеристик кристаллов минералов с соответствующими показателями мономинеральных кристаллических пород можно наблюдать снижение модулей упругости и деформации. Так, если модуль упругости кристалла кальцита равен Е = 12× 105, то даже плотные мраморы имеют модуль упругости до Е = 10× 105 кгс/см2. Модуль упругости кварца равен Е = 10, 3× 105, а кварцитов - 9, 2× 105 кгс/см2. Поскольку при оценке устойчивости выработок, целиков часто возникает необходимость характеризовать те или иные свойства массива по данным испытаний образцов в лаборатории, в практике находят применение так называемые коэффициенты структурного ослабленияli, характеризующие степень снижения показателей соответствующих механических свойств массива пород вследствие наличия в массиве естественных трещин или других поверхностей структурных неоднородностей. Коэффициенты структурного ослабления li, могут быть определены для большинства прочностных и деформационных характеристик - пределов прочности на сжатие и растяжение, модуля упругости Е, сцепления [ t0 ], угла внутреннего трения j и др. Но наиболее употребителен коэффициент структурного ослабления, характеризующий отношение сцепления по контактам естественных трещин к сцеплению в монолитной породе. Этот коэффициент для широкого диапазона породных массивов достаточно устойчив, составляет 0, 01-0, 02 и наглядно иллюстрирует влияние неоднородностей второго порядка - крупноблоковой естественной трещиноватости - на прочностные характеристики массива пород. Для мелкоблоковой трещиноватости (третий порядок) коэффициент структурного ослабления составляет 0, 1-0, 2, а по микротрещинам (четвертый порядок) близок к 1. Влияние других видов структурных неоднородностей на прочность массива изучено менее детально, имеются лишь обобщенные данные о прочностных характеристиках, в частности, значения сцепления и углов внутреннего трения по контактам слоев различных осадочных толщ и отдельных петрографических разновидностей пород. Основная литература: [1.7.4, с.18-35] Дополнительная литература: [1.7.5, с.81-106]; [1.7.8, с 17-91] Контрольные вопросы 1. Какие составляющие определяют состояние массивов горных пород? 2. Глубинные зоны Земли и их параметры. 3. Классификации горных пород. 4. Петрографические особенности горных пород. 5. Что следует понимать под структурой и текстурой горных пород? 6. Основные виды тектонических структур земной коры и верхней мантии. 7. Классификация структурных неоднородностей массивов горных пород. 8. В чем заключается общая закономерность структуры, характерная для верхней мантии, земной коры и массивов горных пород? 9. Чем определяется степень влияния структурных неоднородностей различных порядков на условия деформирования и разрушения конкретных объектов? 10. Что такое масштабный эффект? 11.Что такое коэффициент структурного ослабления?
|
Последнее изменение этой страницы: 2017-05-11; Просмотров: 570; Нарушение авторского права страницы