Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ЦИКЛЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯСтр 1 из 2Следующая ⇒
ЦИКЛЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ Идея использования в качестве рабочего тела продуктов сгорания органического топлива принадлежит Сади Карно. Он обосновал принцип работы двигателя внутреннего сгорания (ДВС) с предварительным сжатием воздуха в 1824 г., но по ограниченным техническим возможностям создание такой машины реализовать было нельзя. В 1895 г. в Германии инженер Р. Дизель построил двигатель с внутренним смешением воздуха и жидкого топлива. В таком двигателе сжимается только воздух, а потом в него через форсунку впрыскивается топливо. Благодаря раздельному сжатию воздуха в цилиндре такого двигателя получалось большое давление и температура, а впрыскиваемое туда топливо самовозгоралось. Такие двигатели получили название дизельных в честь их изобретателя. Основными преимуществами поршневых ДВС по сравнению с ПТУ является их компактность и высокий температурный уровень подвода теплоты к рабочему телу. Компактность ДВС обусловлена совмещением в цилиндре двигателя трех элементов тепловой машины: горячего источника теплоты, цилиндров сжатия и расширения. Поскольку цикл ДВС разомкнутый, то в качестве холодного источника теплоты в нем используется внешняя среда (выхлоп продуктов сгорания). Малые размеры цилиндра ДВС практически снимают ограничения на максимальную температуру рабочего тела. Цилиндр ДВС имеет принудительное охлаждение, а процесс горения быстротечен, поэтому металл цилиндра имеет допустимую температуру. КПД таких двигателей высок. Основным недостатком поршневых ДВС является техническое ограничение их мощности, находящееся в прямой зависимости от объема цилиндра. Термодинамический анализ циклов ДВС с подводом Теплоты к рабочему телу при постоянном объеме Цикл ДВС с подводом теплоты при постоянном объеме соответствует карбюраторному двигателю. В этом двигателе в цилиндр поступает топливно-воздушная смесь, которая сжимается и за счет искры в электрической свече воспламеняется (рис. 11.2). Процесс горения топлива быстротечен и происходит практически при постоянном объеме. Степень сжатия в ДВС с подводом теплоты при постоянном объеме ограничена температурой самовоспламенения топливовоздушной смеси. В зависимости от вида топлива максимальные значения e находятся в диапазоне от 7 до 10. При превышении степени сжатия этих значений самовоспламенение и сгорание топлива происходит раньше, чем поршень достигнет ВМТ. Это явление детонации связано с разрушением цилиндра. Термический КПД таких двигателей составляет 50 – 55 %. Это весьма большие значения. Однако в реальном цикле таких ДВС необратимости в адиабатных и ряде других процессов (принудительное охлаждение цилиндра, выхлоп и забор рабочего тела и т.д.) снижает их КПД до 25 – 30 %.
Термодинамический анализ циклов ДВС с подводом Термодинамический анализ цикла ДВС со смешанным Подводом теплоты к рабочему телу
В 1904 г. русский инженер Г.В. Тринклер предложил бескомпрессорный двигатель со смешанным подводом теплоты к рабочему телу. Усовершенствованные двигатели, работающие по предложенному Тринклером принципу, работают во многих современных «дизельных» двигателях (рис 11.8). Воздух, сжатый до температуры самовоспламенения топлива в основном цилиндре двигателя (поршень в положении ВМТ), через узкое отверстие поступает в малую камеру (форкамеру), куда через механическую форсунку впрыскивается топливо. Топливо в форкамере самовоспламеняется и создает давление газов большее, чем давление воздуха в основном цилиндре. За счет разности давлений газы и несгоревшее топливо из форкамеры выбрасываются с большой скоростью через узкое отверстие в основной цилиндр. В основном цилиндре происходит интенсивное перемешивание газов и топлива с воздухом и окончательное сгорание топлива при одновременном перемещении поршня в цилиндре в сторону НМТ. Дальнейшее перемещение поршня до НМТ осуществляется за счет расширения продуктов сгорания топлива В таком двигателе процесс сжигания топлива состоит из двух стадий: 1) частичное сгорание топлива в форкамере при постоянном объеме, 2) окончательное сгорание топлива при постоянном давлении в основном цилиндре. Цикл прямоточного ВРД В этом двигателе используется скоростной напор воздуха летательного аппарата для предварительного сжатия воздуха в диффузоре (рис. 12.1).
Воздух со скоростью набегающего потока поступает в первую часть ВРД – диффузор, где за счет уменьшения скорости потока происходит увеличение давления воздуха. Далее воздух поступает в камеру сгорания двигателя, куда впрыскивается топливо и осуществляется его воспламенение за счет электрической искры. Процесс сгорания топлива организуется таким образом, чтобы давление и скорость потока газов не изменялись, поэтому канал камеры сгорания имеет небольшое расширение (учитывается увеличение объема газов с увеличением температуры в процессе сгорания топлива). После камеры сгорания газы поступают в сопловой канал, где они расширяются до атмосферного давления. В сопловом канале скорость потока газов возрастает, а при выходе газов из сопла с большой скоростью в атмосферу возникает реактивная сила, за счет которой и происходит движение летательного аппарата. Схема, приведенная на рис.12.1, соответствует ВРД для дозвуковых скоростей самолетов (600 – 800 км/ч). При сверхзвуковых скоростях движения самолетов ВРД должен иметь сверхзвуковой диффузор и сверхзвуковое сопло (рис. 12.3).
Внутренний относительный КПД ВРД весьма низок и не превышает 2 – 4 % для дозвуковых скоростей, при сверхзвуковых скоростях КПД может увеличиваться более чем в 2 раза. Необходимо отметить, что современные сверхкритические ВРД имеют на входе в сопло конусные обтекатели воздуха (рис.12.4). Обтекатель организует газодинамическую перестройку потока воздуха от сверхзвуковой скорости до дозвуковой скорости еще до входа в диффузор. Такая конструкция заменяет суживающуюся часть сверхзвукового диффузора, что позволяет избежать скачков уплотнения потока в канале диффузора и, соответственно, снижает необратимость адиабатного процесса сжатия воздуха, т.е. приводит к увеличению давления на выходе из диффузора по сравнению с конструкцией ВРД рис. 12.3. Для запуска ВРД требуется набегающий поток воздуха, поэтому их запуск осуществляется с помощью специальных устройств: пороховые заряды для ракет, баллоны со сжатым воздухом или стартовые жидкостные реактивные двигатели для самолетов и вертолетов и т.п.
ЦИКЛЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ Идея использования в качестве рабочего тела продуктов сгорания органического топлива принадлежит Сади Карно. Он обосновал принцип работы двигателя внутреннего сгорания (ДВС) с предварительным сжатием воздуха в 1824 г., но по ограниченным техническим возможностям создание такой машины реализовать было нельзя. В 1895 г. в Германии инженер Р. Дизель построил двигатель с внутренним смешением воздуха и жидкого топлива. В таком двигателе сжимается только воздух, а потом в него через форсунку впрыскивается топливо. Благодаря раздельному сжатию воздуха в цилиндре такого двигателя получалось большое давление и температура, а впрыскиваемое туда топливо самовозгоралось. Такие двигатели получили название дизельных в честь их изобретателя. Основными преимуществами поршневых ДВС по сравнению с ПТУ является их компактность и высокий температурный уровень подвода теплоты к рабочему телу. Компактность ДВС обусловлена совмещением в цилиндре двигателя трех элементов тепловой машины: горячего источника теплоты, цилиндров сжатия и расширения. Поскольку цикл ДВС разомкнутый, то в качестве холодного источника теплоты в нем используется внешняя среда (выхлоп продуктов сгорания). Малые размеры цилиндра ДВС практически снимают ограничения на максимальную температуру рабочего тела. Цилиндр ДВС имеет принудительное охлаждение, а процесс горения быстротечен, поэтому металл цилиндра имеет допустимую температуру. КПД таких двигателей высок. Основным недостатком поршневых ДВС является техническое ограничение их мощности, находящееся в прямой зависимости от объема цилиндра. |
Последнее изменение этой страницы: 2017-05-05; Просмотров: 430; Нарушение авторского права страницы