Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Электромагнитные силы, создаваемые магнитным полем.



Энергия, заключенная в магнитном поле, проявляет себя в виде электромагнитных сил, которые возникают при взаимодействии магнитного поля с движущимися электрическими зарядами. Электромагнитная сила, возникающая при движении электрического заряда в магнитном поле, действует на него в направлении, перпендикулярном движению и направлению силовых линий, и стремится вытолкнуть заряд за пределы поля (см. п.16, рис. 24).

Если поместить в магнитное поле проводник с током I, то между электронами, проходящими по проводнику, и магнитным полем возникнут электромагнитные силы, которые, складываясь, образуют результирующую силу F, стремящуюся вытолкнуть проводник из магнитного поля (рис. 34). Электромагнитная сила определяется законом Ампера. Он формулируется следующим образом. Электромагнитная сила, действующая на проводник с током, находящийся в магнитном поле и расположенный перпендикулярно направлению поля, равна произведению силы тока I, индукции магнитного поля В и длины проводника l:

F = IBl.

Направление действия силы F определяют по правилу левой руки: левую руку следует расположить так, чтобы магнитные линии входили в ладонь, а четыре вытянутых пальца совместить с направлением тока, тогда расположенный под прямым углом большой палец укажет направление действия cилы. Сила F возникает только в том случае, если проводник расположен перпендикулярно или под некоторым углом к магнитным силовым линиям поля. Если же проводник расположен вдоль силовых линий поля, то электромагнитная сила будет равна нулю.

Для того чтобы изменить направление электромагнитной силы, необходимо изменить направление тока в проводнике или же направление магнитного поля.

Возникновение электромагнитной силы F при взаимодействии проводника с током и магнитного поля можно наглядно представить как результат взаимодействия двух магнитных полей. Вокруг проводника с током возникает свое собственное круговое магнитное поле (рис. 35), которое будет складываться с внешним магнитным полем (например, постоянного магнита), в которое помещен проводник с током. При этом справа от проводника, где силовые линии поля проводника совпадают с линиями внешнего поля, происходит сгущение силовых линий; слева от проводника, где силовые линии поля проводника направлены навстречу линиям внешнего поля, происходит разрежение силовых линий. Магнитные силовые линии обладают свойством упругости, напоминающим свойство резиновых нитей, которые стремясь сократиться по длине, будут выталкивать проводник из области сгущения силовых линий в сторону их разрежения. В результате возникает электромагнитная сила F.

Виток с током в магнитном поле. Если поместить в магнитное поле не проводник, а виток (или катушку) с током и расположить его вертикально (рис. 36, а), то, применяя правило левой руки к верхней и нижней сторонам витка, получим, что электромагнитные силы F, действующие на них, будут направлены в разные стороны. В результате действия этих двух сил возникает вращающий момент М, который вызовет поворот витка.

M = FD,

где: D — расстояние между сторонами витка.

Виток будет поворачиваться в магнитном поле до тех пор, пока он не займет положение, перпендикулярное магнитным силовым линиям поля (рис. 36, б). Для увеличения вращающего момента в электрических двигателях применяют не один виток, а несколько. Эти витки, соединенные соответствующим образом, образуют обмотку якоря электродвигателя.

 

Электромагнитная индукция.

При пересечении проводником силовых линий магнитного поля в нем возникает или, как говорят, индуцируется э. д. с. Это явление называется электромагнитной индукцией.

Возникновение э.д.с. объясняется действием сил магнитного поля на находящиеся в проводниках свободные электроны. Свободные электроны под влиянием этих сил начнут двигаться вдоль проводника (рис. 37). В результате этого движения на одном конце проводника накопятся свободные электроны и возникнет отрицательный электрический заряд, а на другом конце ввиду недостатка электронов появится положительный заряд.

Разность потенциалов на концах проводника численно равна индуцированной в проводнике э.д.с. Индуцирование э.д.с. в проводнике происходит независимо от того, включен ли он в какую-либо электрическую цепь или нет. Если присоединить концы этого проводника к какому-либо приемнику электрической энергии, то под влиянием разности потенциалов по замкнутой цепи потечет электрический ток.

Значение индуцированной э. д. с. определяется законом электромагнитной индукции Фарадея. Он формулируется следующим образом. Индуцированная э. д. с. е прямо пропорциональна индукции магнитного поля В, длине проводника l и скорости его перемещения v в направлении, перпендикулярном силовым линиям поля,

e = Blv.

Если проводник перемещается вдоль силовых линий поля, т. е. как бы скользит по ним, то э.д.с. в нем не возникает.

Направление индуцированной э. д. с. определяют правилом правой руки. Правую руку следует расположить так, чтобы магнитные силовые линии входили в ладонь, а большой палец совместить с направлением движения проводника (т. е. направлением его скорости v), то вытянутые четыре пальца укажут направление индудированной э.д.с. е (рис. 38). Пользуясь этим правилом, легко убедиться в том, что при изменении направления движения проводника будет изменяться и направление индуцированной э.д.с.

Индуцировать э.д.с. в неподвижном проводнике можно перемещением самого магнитного поля или изменением магнитного потока. При этом, чем быстрее изменяется магнитный поток, тем больше индуцированная э.д.с.

 


Способы индуцирования э. д. с. в электрических машинах. Явление электро-магнитной индукции широко используется в различных электрических машинах и устройствах. На этом принципе основано устройство электрических генераторов,
двигателей и трансформаторов. Для индуцирования э. д. с. в них обычно применяются три способа:

-изменение тока в катушке 1 (рис. 39, а), в магнитном поле которой расположена вторая катушка 2. При этом непрерывно изменяется магнитный поток, охватываемый второй катушкой, и в ней, а также и в первой катушке, будут индуцироваться электродвижущие силы е1 и е2. Этот способ используют в трансформаторах;

-вращение магнитного поля, созданного постоянными магнитами или электромагнитами 3, относительно неподвижных катушек 4 (рис. 39, б). При этом непрерывно изменяется магнитный поток, пронизывающий каждую катушку, и в них индуцируются э. д. с. е. Такой способ используют в машинах переменного тока;

-вращение витков 6 или катушек в постоянном магнитном поле, созданном неподвижными постоянными магнитами 5 или электромагнитами (рис. 39, в). При этом непрерывно изменяется магнитный поток, охватываемый каждым витком или катушкой, вследствие чего в них индуцируется э. д. с. Этот способ используют в электрических машинах постоянного тока.

 

Вихревые токи.

Изменяющийся магнитный поток способен индуцировать э. д. с. не только в проводах или витках катушек, но и в массивных стальных сердечниках, кожухах и других металлических деталях электротехнических установок. Эти э. д. с. являются причиной появлений индуцированных токов, которые действуют в массивных металлических деталях, замыкаясь накоротко в их толще. Такие токи получили название вихревых.

Например, при изменении магнитного потока, созданного катушкой 1 (рис. 40, а), в ее стальном сердечнике 2 индуцируются вихревые токи, замыкающиеся в плоскости, перпендикулярной силовым линиям магнитного поля. Вихревые токи возникают также в сердечниках 3 якорей и роторов электрических машин при вращении их в магнитном поле (рис. 40, б). Природа вихревых токов такая же, как и токов, индуцированных в обычных проводах или катушках. Благодаря очень малому сопротивлению массивных проводников вихревые токи даже при небольшой индуцированной э. д. с. достигают очень больших значений, вызывая чрезмерное нагревание этих проводников.

Способы уменьшения вредного действия вихревых токов. В электрических машинах и аппаратах вихревые токи обычно нежелательны, так как они вызывают нагрев металлических сердечников, создают потери энергии (так называемые потери от вихревых токов), снижают к. п. д. электрических машин и аппаратов и оказывают согласно правилу Ленца размагничивающее действие. Для уменьшения вредного действия вихревых токов применяют два основных способа.

Сердечники электрических машин и аппаратов выполняют из отдельных стальных листов 1 (рис. 41) толщиной 0, 35—1, 0 мм, изолированных один от другого слоем изоляции 2 (лаковой пленкой, окалиной, образующейся при отжиге листов, и пр.). Благодаря этому преграждается путь распространению внхревых токов и уменьшается поперечное сечение каждого отдельного проводника, через которое протекают эти токи, что приводит к уменьшению силы тока.

 

Самоиндукция.

Э.д.с., индуцирования в проводнике или катушке в результате изменения магнитного потока, созданного током, проходящим по этому же проводнику или катушке, носит название э. д. с. самоиндукции. Эта э. д. с. возникает при всяком изменении тока: при замыкании и размыкании электрических цепей, а так же при изменении тока в цепи. Чем быстрее изменяется ток в проводнике или катушке, тем больше скорость изменения пронизывающего их магнитного потока и тем большая э. д. с. самоиндукции в них индуцируется. Направление э. д. с. самоиндукции определяется по правилу Ленца. Э.д.с. самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока. Следовательно, при возрастании тока в проводнике (катушке) индуцированная в них э. д. с. самоиндукции будет направлена против тока, т. е. будет препятствовать его возрастанию, и наоборот, при уменьшении тока в проводнике (катушке) возникает э. д. с. самоиндукции, совпадающая по направлению с током, т. е. препятствующая его убыванию. Если же ток в катушке не изменяется, то э.д.с. самоиндукции не возникает.

 
 

В электрической цепи (рис.42, а), состоящей из резистора с сопротивлением R и
катушки К, ток i создается совместным действием напряжения U источника и э.д. с. самоиндукции eL индуцируемой в катушке.

При подключении рассматриваемой цепи к источнику э. д. с. самоиндукции eL (см. сплошную стрелку) сдерживает нарастание силы тока. Поэтому ток i достигает установившегося значения I=U/R (согласно закону Ома) не мгновенно, а в течение определенного промежутка времени (рис. 42, б). За это время в электрической цепи происходит переходный процесс, при котором изменяются eLи i. Точно так же при выключении электрической цепи ток i не уменьшается мгновенно до нуля, а из-за действия э. д. с. eL(см. штриховую стрелку) постепенно уменьшается.

 

Индуктивность. Способность различных проводников (катушек) индуцировать э.д.с. самоиндукции оценивается индуктивностью L. Она показывает, какая э. д. с. самоиндукции возникает в данном проводнике (катушке) при изменении тока на 1 А в течение 1 с. Индуктивность измеряется в генри (Гн).

Коммутационные перенапряжения. Особенно сильно проявляет себя э. д. с. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками (обмотки генераторов, электродвигателей, трансформаторов и пр.), т. е. цепей, обладающих большой индуктивностью. В этом случае возникающая э. д. с. самоиндукции eLможет во много раз превысить напряжение U источника и, суммируясь с ним, послужить причиной возникновения перенапряжений в электрических цепях (рис. 43, а), называемых коммутационными (возникающими при коммутации — переключениях электрических цепей). Они являются опасными для обмоток электродвигателей, генераторов и трансформаторов, так как могут вызвать пробой их изоляции.

 
 

Большая э. д. с. самоиндукции способствует также возникновению электрической дуги в электрических аппаратах, осуществляющих коммутацию электрических цепей. Например, в момент размыкания контактов рубильника (рис. 43, б) образующаяся э.д.с. самоиндукции сильно увеличивает разность потенциалов между разомкнутыми контактами рубильника и пробивает воздушный промежуток. Возникающая при этом электрическая дуга поддерживается в течение некоторого времени э.д.с. самоиндукции, которая, таким образом, затягивает процесс отключения тока в цепи.

 

Взаимоиндукция.

Взаимоиндукцией называется явление индуцирования э. д. с. в проводнике или катушке при изменении магнитного потока, создаваемого другим проводником (катушкой). Индуцируемая таким образом э. д. с. ем носит название э. д. с. взаимоиндукции.

 

Контрольные вопросы:

1. Какие существуют способы усиления магнитных полей?

2. Что такое магнитная индукция, магнитный поток, напряженность магнитного поля?

3. Каковы основные характеристики ферромагнитных материалов?

4. В каких случаях магнитное поле создает механические силы и как они определяются?

5. Что такое индуцированная э.д.с. и как определяется ее значение и направление?

6. Что представляют собой вихревые токи и какие существуют способы уменьшения их вредного действия?

7. Что такое э. д. с. самоиндукции и взаимоиндукции?

 


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 221; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь