Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Литьё по выплавляемым моделямСтр 1 из 4Следующая ⇒
Виды литья Литье в песчано-глинистые формы самый распространенный вид литья (более 90% по массе всех, получаемых в промышленности, отливок). Этот вид литья применяется как в индивидуальном, так и массовом производстве. Его технологические возможности:
Литьё в песчаные формы — дешёвый, самый грубый (в плане размерной точности и шероховатости поверхности отливок), но самый массовый (до 75-80 % по массе получаемых в мире отливок) вид литья. Вначале изготовляется литейная модель (ранее — деревянная, в настоящее время часто используются металлические или пластиковые модели, полученные методами быстрого прототипирования), копирующая будущую деталь. Модель, закрепленная на подмодельной плите, засыпается песком или формовочной смесью (обычно песок и связующее), заполняющей пространство между ней и двумя открытыми ящиками (опоками). Отверстия и полости в детали образуются с помощью размещённых в форме литейных песчаных стержней, копирующих форму будущего отверстия. Насыпанная в опоки смесь уплотняется встряхиванием, прессованием или же затвердевает в термическом шкафу (сушильной печи). Образовавшиеся полости заливаются расплавом металла через специальные отверстия — литники. После остывания форму разбивают и извлекают отливку. После чего отделяют литниковую систему (обычно это обрубка), удаляют облой и проводят термообработку. Для получения отливки данным методом могут применяться различные формовочные материалы, например, песчано-глинистая смесь или песок в смеси со смолой и т. д. Для формирования формы используют опоку (металлический короб без дна и крышки). Опока имеет две полуформы, то есть состоит из двух коробов. Плоскость соприкосновения двух полуформ – поверхность разъёма. В полуформу засыпают формовочную смесь и утрамбовывают её. На поверхности разъёма делают отпечаток промодели (промодель соответствует форме отливки). Также выполняют вторую полуформу. Соединяют две полуформы по поверхности разъёма и производят заливку металла. Новым направлением технологии литья в песчаные формы является применение вакуумируемых форм из сухого песка без связующего. Для слайда 3. Сначала, в соответствии с чертежами, делается деревянная модель изделия, затем она утапливается в песок в нижней части стального корпуса вплоть до ее самого широкого поперечного сечения (А). Затем монтируется верхняя часть формы. К нижнему корпусу за жимами прикрепляется верхний, образуя цельную коробку, а затем туда еще досыпается и утрамбовывается песок, таким образом, чтобы он покрыл всю модель целиком. В необходимых местах фиксируются литник и выпор (В). Отдельно делают внутренний литейный стержень из песка для того, чтобы можно было создать полость внутри будущей отливки. Песок форм, который первоначально был смешан с силикатом натрия, образует силика-гель, когда через него прокачивается углекислый газ. Этот гель имеет консистенцию сиропа и связывает песок. Затем корпус формы раскрывают и убирают деревянную модель. Стержень помещают в корпус формы, и форму опять собирают (С). Деревянный лит ник и выпор убираются. Расплавленный металл вливается в высушенную форму через конусообразный литник. Вытесняемый воздух выходит через выпор (D). После охлаждения корпус формы раскрывается и достается отливка (Е). Литник и выпор отрезаются, а песок выбивается. В готовой отливке (F) показана полость, образованная на месте стержня.
Металлическое литьё в кокиль – считается одним из высококачественных методов литья. Суть такого литейного способа состоит в следующем: производится кокиль – разборная форма (чаще всего металлическая), в которую производится литьё. После застывания и охлаждения, кокиль раскрывается и из него извлекается изделие. Затем кокиль можно повторно использовать для отливки такой же детали. В отличие от других способов литья в металлические формы (литьё под давлением, центробежное литьё и др.), при литье в кокиль заполнение формы жидким сплавом и его затвердевание происходят без какого-либо внешнего воздействия на жидкий металл, а лишь под действием силы тяжести. Основные операции и процессы: очистка кокиля от старой облицовки, прогрев его до 200—300°С, покрытие рабочей полости новым слоем облицовки, простановка стержней, закрывание частей кокиля, заливка металла, охлаждение и удаление полученной отливки. Процесс кристаллизации сплава при литье в кокиль ускоряется, что способствует получению отливок с плотным и мелкозернистым строением, а, следовательно, с хорошей герметичностью и высокими физико-механическими свойствами. Однако отливки из чугуна из-за образующихся на поверхности карбидов требуют последующего отжига. При многократном использовании кокиль коробится и размеры отливок в направлениях, перпендикулярных плоскости разъёма, увеличиваются. В кокилях получают отливки из чугуна, стали, алюминиевых, магниевых и др. сплавов. Особенно эффективно применение кокильного литья при изготовлении отливок из алюминиевых и магниевых сплавов. Эти сплавы имеют относительно невысокую температуру плавления, поэтому один кокиль можно использовать до 10000 раз (с простановкой металлических стержней). До 45 % всех отливок из этих сплавов получают в кокилях. При литье в кокиль расширяется диапазон скоростей охлаждения сплавов и образования различных структур. Сталь имеет относительно высокую температуру плавления, стойкость кокилей при получении стальных отливок резко снижается, большинство поверхностей образуют стержни, поэтому метод кокильного литья для стали находит меньшее применение, чем для цветных сплавов. Данный метод широко применяется при серийном и крупносерийном производстве.
Материалы отливок
Способ литья по газифицируемым моделям (ЛГМ) обладает рядом преимуществ:
Технология ЛГМ продолжает активно развивается во всем мире, но многие российские компании продолжают использовать устаревшие методы литья — более дорогие, требующие больше усилий и времени. Внедрению современного способа литья по ЛГМ мешает недостаток информации и укоренившиеся стереотипы. Центробежное литьё Принцип центробежного литья заключается в том, что заполнение формы расплавом и формирование отливки происходят при вращении формы вокруг горизонтальной, вертикальной или наклонной оси, либо при ее вращении по сложной траектории. Этим достигается дополнительное воздействие на расплав и затвердевающую отливку поля центробежных сил. Процесс реализуется на специальных центробежных машинах и столах. Чаше используют два варианта способа, в которых расплав заливается в форму с горизонтальной или вертикальной осью вращения. В первом варианте получают отливки – тела вращения малой и большой протяженности, во втором – тела вращения малой протяженности и фасонные отливки. Особенности формирования отливки. Главная особенность формирования отливок при центробежном способе литья заключается в том, что заполнение формы металлом и затвердевание отливки происходят в поле действия центробежных сил, во много раз превосходящих силу тяжести. В этих условиях если твердые частицы соприкасаются со стенкой формы, они оказываются прижатыми к стенке и уже не всплывают. На этом основано использование сыпучих покрытий для металлических форм при центробежном литье. Действие центробежных сил необходимо учитывать и при конструировании систем шлакозадержания и питания отливки, например, при получении стальных фасонных отливок центробежной заливкой в песчаные формы. Инородные частицы (газы, шлак и т.д.), плотность которых меньше плотности расплава, при центробежном литье с большой скоростью всплывают на свободную поверхность расплава. Это приводит к необходимости назначать большие припуски на обработку свободных поверхностей отливок, что является недостатком данного способа литья. Таким образом, при направленном затвердевании можно получить отливки с плотным строением тела, без усадочных дефектов и инородных включений. Однако центробежные силы способствуют направленному затвердеванию только в тех случаях, если выделяющиеся на свободной поверхности кристаллы твердой фазы имеют большую плотность, чем плотность остального расплава. Наивысшие технико-экономические показатели центробежного способа литья достигаются при получении пустотелых цилиндрических отливок с различными размерами и массой (длиной до нескольких метров и массой до нескольких тонн): труб разного назначения из чугуна, стали, цветных и специальных сплавов; втулок и гильз для стационарных и транспортных дизелей; колец подшипников качения и др. Большое распространение получило центробежное литье для изготовления биметаллических изделий, изделий из сплавов с низкой жидкотекучестью и высоким поверхностным натяжением, при необходимости получения тонкостенных отливок со сложной геометрией и микрорельефом поверхности. К ним относятся, например, турбинные диски с лопатками, отливки художественного и ювелирного назначения. Литьё под давлением занимает одно из ведущих мест в литейном производстве. Производство отливок из алюминиевых сплавов в различных странах составляет 30—50 % общего выпуска (по массе) продукции литья под давлением. Следующую по количеству и разнообразию номенклатуры группу отливок представляют отливки из цинковых сплавов. Магниевые сплавы для литья под давлением применяют реже, что объясняется их склонностью к образованию горячих трещин и более сложными технологическими условиями изготовления отливок. Получение отливок из медных сплавов ограничено низкой стойкостью пресс-форм. Выполняют машинным способом в металлические формы, называемые пресс-формами. Заполнение металлом пресс формы осуществляют после её смыкания через литниковые каналы, которые соединяют рабочую полость пресс-формы с камерой прессования машины для литья под давлением. Наружные очертания отливки образуются рабочей поверхностью сомкнутой пресс-формы, а внутренние отверстия и полости получают при помощи металлических стержней, которые извлекают из затвердевшей отливки в момент раскрытия пресс-формы. Стержни имеют механически привод в виде реек, шестерен, зубатых секторов, клиньев, эксцентриков, кинематически связанных с механизмом раскрытия пресс формы. Металл заливают в камеру прессования и запрессовывают внутрь рабочей полости пресс-формы. После кристаллизации отливки происходит раскрытие пресс-формы для извлечения отливки, при этом отдельная часть остается неподвижной, а остальные части отводятся гидроприводом. Преимущественно используют сплавы на основе меди, алюминия, цинка, свинца, сурьмы, которые оказывают незначительное тепловое воздействие на пресс-формы. Разгар и деформация пресс-форм приводят к потере точности и чистоты поверхности отливок. Для сохранения постоянства размеров пресс-формы делают водоохлаждение. В последнее время все шире начинают использоваться тугоплавкие сплавы, например, стали, требующие очень дорогих пресс-форм с жаропрочными вставками из сплавов на основе молибдена. Внутренние полости в отрезках поучают при помощи латунных стержней. После кристаллизации стальной отливки латунный стержень остаётся внутри неё, при высокотемпературном отжиге он выплавляется из отливки, оставляя после себя полость. Номенклатура выпускаемых отечественной промышленностью отливок очень разнообразна. Этим способом изготавливают литые заготовки самой различной конфигурации массой от нескольких граммов до нескольких десятков килограммов. Выделяются следующие положительные стороны процесса литья под давлением:
Также выделяют следующие негативное влияние особенностей литья под давлением, приводящие к потере герметичности отливок и невозможности их дальнейшей термообработки:
Задавшись целью получения отливки заданной конфигурации, необходимо чётко определить её назначение: будут ли к ней предъявляться высокие требования по прочности, герметичности или же её использование ограничится декоративной областью. От правильного сочетания технологических режимов литья под давлением, зависит качество изделий, а также затраты на их производство. Соблюдение условий технологичности литых деталей, подразумевает такое их конструктивное оформление, которое, не снижая основных требований к конструкции, способствует получению заданных физико-механических свойств, размерной точности и шероховатости поверхности при минимальной трудоёмкости изготовления и ограниченном использовании дефицитных материалов. Всегда необходимо учитывать, что качество отливок, получаемых литья под давлением, зависит от большого числа переменных технологических факторов, связь между которыми установить чрезвычайно сложно из-за быстроты заполнения формы. Основные параметры, влияющие на процесс заполнения и формирования отливки, следующие:
Сочетанием и варьированием этих основных параметров, добиваются снижения негативных влияний особенностей процесса ЛПД. Исторически выделяются следующие традиционные конструкторско-технологические решения по снижению брака:
Также, существует ряд нетрадиционных решений, направленных на устранение негативного влияние особенностей ЛПД:
Литьё полимеров под давлением – технологический процесс переработки пластмасс путём впрыска расплава полимера под давлением в литьевую форму с последующим его охлаждением. Термин — литье под давлением отражает особенность процесса формования, когда для компенсации объемной и линейной усадки используются значительные давления расплава при заполнении и охлаждении в оформляющей полости (литьевой форме). Методом литья под давлением производится более трети от общего объема изделий из полимерных материалов. В связи с высокой производительностью и относительно высокой стоимости оснастки в основном применяется при крупносерийном и массовом производстве изделий из пластмасс. Сырье для литья представляет собой гранулы термопластов, термоэластопластов и термореактивные порошки, обладающих широким диапазоном механических и физических свойств. Термопластичные материалы сохраняют способность к повторной переработке после формования, а термореактивные при переработке претерпевают необратимые химические изменения, приводящие к образованию неплавкого и нерастворимого материала. В процессе литья специально подготовленный материал поступает в зону шнека машины, где плавится и гомогенизируется, а затем под высоким давлением впрыскивается в пресс-форму через литниковые каналы, заполняя с высокой скоростью её полость, а затем, остывая, образует отливку. Отверждение материала происходит сначала у холодных стенок полости формы, а затем распространяется вглубь тела отливки.
Технология жидкой штамповки Технологию жидкой штамповки можно рассматривать, с одной стороны, как технологию литья под давлением, с другой — как процесс горячей штамповки в закрытых штампах. Металл заливается в штамп в жидком состоянии, а окончательное формообразование (штамповка) детали происходит в момент, когда металл находится в полужидком состоянии, а затем в твердом. Это позволяет получать заготовки с высокой плотностью металла и с повышенными механическими свойствами. Чтобы правильно понять и оценить по достоинству технологические возможности процесса жидкой штамповки, было бы целесообразным рассмотреть теоретические основы этого процесса. Это в значительной степени способствовало ускорению внедрения жидкой штамповки в области машиностроения и приборостроения. Процесс кристаллизации и затвердевания жидкого металла при наличии высоких давлений протекает в более благоприятных условиях по сравнению с литейными процессами, а именно: а) вследствие увеличения коэффициента теплоотдачи повышается скорость охлаждения, в результате чего структура металла получается более мелкозернистой; б) повышение давления предотвращает появление усадочных раковин; в) с увеличением давления растет растворимость водорода, что предотвращает образование газовых микропор; г) вследствие повышенных давлений при кристаллизации жидкого металла замедляется и предотвращается образование микроскопических раковин при росте дендритов; д) заполнение полостей штампов и качество поверхности штампуемых деталей улучшаются. Все технологические преимущества жидкой штамповки, перечисленные выше, обусловливают и повышение механических свойств отштампованных деталей. Из-за повышения температуры жидкого металла в результате увеличения давления расчетную температуру кристаллизации следует выбирать так, чтобы, несмотря на ее снижение при охлаждении, фазовая граница перемещалась лишь тогда, когда давление достигало. Применение высоких давлений при жидкой штамповке позволяет изготовлять детали из сплавов с неблагоприятными литейными свойствами. Увеличение скорости кристаллизации действует благоприятно при жидкой штамповке деталей из сплавов с большим температурным интервалом кристаллизации. Это уменьшает опасность появления ликвационных зон. Заливка и штамповка жидкого металла. В начале процесса необходимо повысить температуру металла до температуры заливки для обеспечения его жидкотекучести и лучшего заполнения штампа. Перегрев расплавленного металла выше температуры заливки нежелателен, так как это приводит к повышенным термическим перегрузкам инструментальной оснастки и ухудшению структуры металла детали. Также необходимо обеспечить условия, исключающие попадание в расплавленный металл шлаковых включений. Повышение скорости заливки металла в штамп ухудшает условия его работы, разрушает рабочую поверхность, а в некоторых случаях приводит к сварке заготовки со штампом, что исключает последующее его использование. В связи с этим для процессов жидкой штамповки рекомендуют невысокие скорости заливки металла. На границе раздела штамп — жидкий металл необходимо использовать разделительный слой, обеспечивающий благоприятные условия для штамповой оснастки. Для этой цели используют известь, графит или каолин. По данным некоторых исследователей для заливки расплавленных металлов и сплавов в штампы для жидкой штамповки оптимальными являются следующие температуры: для сталей 1580°С, для медных сплавов 1050°С и для алюминиевых сплавов 700°С. Как видно, применение различных материалов дифференцированно влияет на термические напряжения в штампах, что сказывается на их работоспособности. Для получения деталей методом жидкой штамповки без пор и раковин рекомендуют применять давление в диапазоне 100— 500МПа. Давление является решающим фактором в улучшении структуры и повышении механических свойств штампованных деталей. Для алюминиевых сплавов максимальное прилагаемое давление достигает 350 МПа. Установлено, что в зависимости от сложности и размеров штампуемых деталей выдержка штампуемого металла под давлением, изменяется в пределах 2—10с.
Объёмная штамповка Этоспособ обработки металлов давлением с помощью специальных инструментов - штампов, рабочая полость которых определяет конфигурацию изготовляемой поковки. Горячая объёмная штамповка (ГОШ) — это вид обработки металлов давлением, при которой формообразование поковки из нагретой до ковочной температуры заготовки осуществляют с помощью специального инструмента — штампа. Течение металла ограничивается поверхностями полостей (а также выступов), изготовленных в отдельных частях штампа, так что в конечный момент штамповки они образуют единую замкнутую полость (ручей) по конфигурации поковки. В качестве заготовок для горячей штамповки применяют прокат круглого, квадратного, прямоугольного профилей, а также периодический. При этом прутки разрезают на отдельные (мерные) заготовки, хотя иногда штампуют из прутка с последующим отделением поковки непосредственно на штамповочной машине. Применение объёмной штамповки оправдано при серийном и массовом производстве. При использовании этого способа значительно повышается производительность труда, снижаются отходы металла, обеспечиваются высокие точность формы изделия и качество поверхности. Штамповкой можно получать очень сложные по форме изделия, которые невозможно получить приёмами свободной ковки. Холодная штамповка в отличие от горячей позволяет получить точную форму и высокое качество поверхности изделия, позволяет уменьшить объем или исключить последующую механическую обработку. Поэтому холодное деформирование применяется в таких процессах штамповки, как торцевая раскатка, холодная высадка метизов, холодная накатка. При холодной объёмной штамповке (ХОШ) температура исходной заготовки ниже ковочной. Это обуславливает высокие значения сопротивления металла штамповочному давлению и существенно меньшую текучесть, что ограничивает возможность получения изделий сложной формы. Однако по сравнению с ГОШ металл не подвергается термическим модификациям, нет усадки при охлаждении и нет риска образования горячих трещин. Точность выполнения поверхностей при ХОШ сопоставима с таковой при обработке металлов резанием, однако после ХОШ на поверхности металла, отсутствуют концентраторы напряжений (риски и царапины). Поэтому методами ХОШ изготавливают высокоточные и (или) высоконагруженные детали, например: шаровые опоры подвески автомобилей, коленчатые валы ДВС, детали втулки несущих винтов вертолётов. Для процессов холодной штамповки характерно использование специальных марок материалов, допускающих холодное деформирование без разрушения, так как в процессе деформирования не происходит восстановления структуры (в отличие от динамической рекристаллизации в ходе горячего деформирования). Общий вид технологического процесса при объёмной штамповке:
Объёмная штамповка производится на следующем оборудовании:
Изотермическая штамповка. штамповка при одинаковой температуре штампов и заготовки, неизменной в течение всего процесса. Особенно данный вид штамповки эффективен при получении изделий из современных жаропрочных сплавов, отличающихся очень узким температурным интервалом оптимальной штампуемости. Если заготовка подстуживается, в штампах резко возрастает ее предел текучести и потребная мощность для обработки, инструмент быстро изнашивается. В металле появляются трещины. Предварительный перегрев заготовки ведет к росту зерна металла, поверхностному и глубинному межзеренному окислению (пережогу) и ухудшению механических свойств готовой детали. Естественно, происходит перерасход энергии и быстро изнашивается нагревательное устройство. Сущность изотермической штамповки заключается в том, что разогретую до необходимой температуры заготовку, защищенную от окисления тонким слоем расплавленного боросиликатного стекла, кладут в горячий теплоизолированный штамп, одновременно являющийся нагревательным элементом. Тепло выделяется в нем вихревыми токами, возбуждаемыми водоохлаждаемым индуктором. Благодаря изотермичности достаточен нагрев до 800 – 1000° С вместо 1000 – 1300°С при старых методах. Благодаря хорошей теплоизоляции значительно сокращается расход энергии, а поскольку заготовка не остывает, можно уменьшить скорость деформации, чтобы в процессе обработки успела осуществиться рекристаллизация. Можно уменьшить усилия деформации и по сути перейти от ковки к прессованию. Расплавленное стекло служит неплохой смазкой. Оно препятствует схватыванию детали с инструментом. В результате за один ход пресса можно при сравнительно небольших усилиях отштамповать сложные по конфигурации детали. Так как здесь нет ударов, то сам штамп и пуансон могут быть не коваными и фрезерованными, а отлитыми из жаропрочных литейных сплавов вместе с необходимой гравюрой, которая четко отражается на детали. Следует также упомянуть о возрастании пластичности многих сплавов при малых скоростях деформирования. Так, при температуре 800 °С и выше пластичность титановых сплавов становится практически неограниченной. За один ход пресса удавалось осаживать образцы со степенью деформации 95 – 98%. По сравнению с традиционной технологией горячей штамповки эта технология позволяет:
Промышленное внедрение технологий возможно в следующих отраслях промышленности: Общее машиностроение Энергомашиностроение Нефте- и газодобывающая промышленность Автомобиле- и тракторостроение Авиастроение Например, в машиностроении изделия из алюминиевого сплава, полученные методом изотермической штамповки, применяют в конструкции специализированных устройств для очистки конвейерной ленты. Муфта устанавливается на главном валу и обеспечивает передачу крутящего момента от главного вала к валу, на котором устанавливается элемент очистки. Корпус муфты изготавливается из мерной заготовки по технологии изотермической штамповки. Листовая штамповка Сущность способа заключается в процессе, где в качестве заготовки используют полученные прокаткой лист, полосу или ленту, свёрнутую в рулон. Листовой штамповкой изготовляют самые разнообразные плоские и пространственные детали массой от долей грамма и размерами, исчисляемыми долями миллиметра (например, секундная стрелка ручных часов), и детали массой в десятки килограммов и размерами, составляющими несколько метров (облицовка автомобиля, самолёта, ракеты). Для деталей, получаемых листовой штамповкой, характерно то, что толщина их стенок незначительно отличается от толщины исходной заготовки. При изготовлении листовой штамповкой пространственных деталей заготовка обычно испытывает значительные пластические деформации. Это обстоятельство вынуждает предъявлять к материалу заготовки достаточно высокие требования по пластичности. При листовой штамповке чаще всего используют низкоуглеродистую сталь, пластичные легированные стали, медь, латунь, содержащую более 60 % Cu, алюминий и его сплавы, магниевые сплавы, титан и др. Листовой штамповкой получают плоские и пространственные детали из листовых неметаллических материалов, таких, как кожа, целлулоид, органическое стекло, фетр, текстолит, гетинакс и др. Листовую штамповку широко применяют в различных отраслях промышленности, особенно в таких, как авто-, тракторо-, самолето-, ракето- и приборостроение, электротехническая промышленность и др. К преимуществам листовой штамповки относятся:
Порошковые материалы Материальные памятники, характеризующие этапы развития человеческого общества, свидетельствуют о том, что порошки золота, меди и бронзы применялись людьми 8–10 тыс. лет назад. Еще в бронзовом веке люди умели получать и использовать некоторые виды порошков, а также применять горячую ковку порошковой массы До начала ХХ в. сохранялось лишь эпизодическое применение металлических порошков для различных целей (свинцовых порошков в аккумуляторах, железных – в химических производствах и пр.). Возрождение интереса к порошковой металлургии было прежде всего связано с необходимостью удовлетворения потребностей быстро развивавшейся электротехники. Электроламповой промышленности были нужны тугоплавкие материалы для нитей ламп накаливания, электромашиностроению были необходимы меднографитовые щетки и т.п. В 1900 г. наш соотечественник А.Н. Ладыгин на Всемирной Парижской выставке демонстрировал электрическую лампочку с телом накала из вольфрамовой проволоки, полученной методом порошковой металлургии. Решение этих и других трудных технических задач послужило мощным толчком к налаживанию производства порошковых самосмазывающихся подшипников, твердых сплавов, магнитных, электроконтактных и конструкционных материалов, а также многих других видов продукции. К началу 1950-х гг. мировое ежегодное производство металлических порошков, материалов и изделий из них составляло примерно несколько десятков тысяч тонн. Началось быстрое развитие порошковой металлургии, связанное с созданием крупных специализированных производств порошков и изделий из них. В последующие тридцать лет темпы роста продукции порошковой металлургии в разных странах в среднем составляли 6–10 %, достигая в отдельные периоды 15–20 % (США, ФРГ, Япония и др.). В середине 1980-х гг. было реализовано металлических порошков и изделий из них в мире на пять миллиардов долларов, в том числе в США более чем на один миллиард долларов. По оценкам экспертов, ежегодный прирост объема реализации изделий из порошков составляет не менее 5–7 %. Мировое производство металлических порошков в настоящее время превышает один миллион тонн, а изделий из них – 650–750 тыс. т. Основные направления развития порошковой металлургии связаны прежде всего с преодолением затруднений в осуществлении литья тугоплавких металлов и изделий со специфическими свойствами (дисперсно-упрочненных, фрикционных, антифрикционных, износостойких, высокопористых и других материалов). Изготовление порошковых изделий взамен полученных из литых металлов позволяет значительно (60–70 %) снизить потери металла, количество обрабатывающего оборудования и обслуживающего его рабочего персона, а также энергозатраты на производство единицы продукции. Начавшееся в 1950-е гг. быстрое развитие технологий порошковой металлургии обусловило необходимость унификации понятий в этой специфической области знаний. Керамические подшипники Технически, в промышленных подшипниках из керамики нет ничего нового и все их модификации как две капли воды похожи на стальных предков. Нестандартным является лишь материал: как правило, нитрид кремния (Si3N4). Благодаря тому, что этот вид керамики обладает выдающейся ударной прочностью и высокой жесткостью, этот черный, блестящий после полировки материал стали активно использовать в машиностроении. Условно, эти подшипники можно разделить на две основные группы:
Рабочая температура шаров может достигать 800 °С. |
Последнее изменение этой страницы: 2017-05-05; Просмотров: 1037; Нарушение авторского права страницы