Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Методы удаления пирогенных веществ



Методы депирогенизации подразделяются на:

  • химические;
  • физические;
  • энзиматические.

Химические методы удаления пирогенов. Растворы, содержащие пирогены, нагревают при 100°С в течение 2 часов с добавкой 0, 1 моля перекиси водорода. Эффективен способ нагрева растворов при температуре 116°С в течение 20 мин с добавкой 0, 04 моля перекиси водорода.

Ряд методов основан на применении раствора перманганата калия. Рекомендуется прибавлять к раствору небольшое количество гипохлорита (щавелевой воды): на 1 л добавляют 0, 25 мл раствора гипохлорида натрия с содержанием активного хлора около 0, 5%, смесь выдерживают 30 мин. Избыток гипохлорида удаляют с помощью активированного угля, которого берут из расчета 15% от объема воды. Для удаления пирогенов предлагается также обрабатывать растворы п-хиноном и антрахиноном, которые образуют с пирогенами комплексные соединения.

Для уничтожения пирогенных веществ можно использовать подогрев раствора с 0, 1 н раствором едкого натра или 0, 1 н раствором соляной кислоты (при рН 4, 0) в течение 1 ч. При этом происходит гидролитическое расщепление пирогенов с образованием моносахаридов, не обладающих пирогенными свойствами. Расход кислоты и щелочи при этом очень велик, в связи с чем этот метод неэкономичен.

Из-за возможного взаимодействия компонентов, химический и энзиматический методы мало приемлемы при промышленном изготовлении растворов для инъекций.

Физико-химические методы. Физико-химические методы основываются на явлении адсорбции пирогенов активированным углем, каолином, асбестом, целлюлозой и т.п. Количество пирогенных веществ уменьшается после обработки активированным углем путем встряхивания в течение 15 мин, при этом эффективность очистки зависит от природы пирогенных веществ. Гранулированный уголь менее эффективен. Уголь, применяемый для очистки растворов, должен быть весьма тщательно очищен, хорошо промыт водой, не содержать пирогенов и высушен при температуре 250°С в течение 2 ч. Однако, обработка растворов активированным углем не всегда приводит к полной депирогенизации. Кроме того, этот метод нельзя применять для очистки растворов лекарственных веществ, легко адсорбируемых углем, например, солей алкалоидов или легко окисляемых, например, аскорбиновой кислоты.

Ряд авторов рекомендует для очистки от пирогенов использовать ионообменные смолы (например, для аминокислот), считая, что они более эффективны, чем активированный уголь. Депирогенизацию воды можно осуществить путем фильтрования через бактериальный фильтр Зейтца. Размер пор многих бактериальных фильтров такой же, как у фильтра Зейтца, но они не пригодны для удаления пирогенных веществ, поэтому нельзя объяснить эффективность удаления пирогенных веществ только малым диаметром пор. Рекомендуется, чтобы диаметр пор фильтра Зейтца не превышал 2, 4 мкм. Фильтр Зейтца задерживает пирогенные вещества из раствора на 99, 5%, даже когда они находятся в значительном количестве. Чем меньше концентрация пирогенных веществ в растворе, тем лучше они задерживаются на фильтре.

Обработка раствора активированным углем с последующим фильтрованием через фильтр Зейтца обеспечивает более полное удаление пирогенных веществ.

Для удаления пирогенных веществ из растворов аминокислот, применяемых для внутривенного вливания, предлагается их автоклавирование при температуре 120°С в течение 2-3 часов в атмосфере азота.

Уменьшение пирогенных веществ происходит при термической стерилизации в течение 20 мин при 120°С, а при 140°С в течение 20 мин наступает их инактивация. Полное уничтожение пирогенных веществ достигается стерилизацией в сушильном шкафу при температуре 200°С в течение 45 мин. или при 250°С в течение 30 мин. При температуре 120°С пирогенность уменьшается в процессе автоклавирования на следующие величины: в течение 30 мин на 25%, в течение 1 ч на 70%, в течение 2 ч на 95%, в течение 4 ч на 100%.

К физико-химическим методам удаления пирогенов из растворов следует отнести уничтожение их с помощью ультразвука с частотой 2 МГц и интенсивностью 2 вт/см2 в течение 10 мин. При этом достигается полное разрушение пирогенных веществ. В то же время ультразвук в 800 МГц и интенсивностью 1, 5 вт/см2 в течение 5-10 мин незначительно снижает пирогенность воды. При действии ультразвука рН воды изменяется на ±0, 75.

Государственным научным центром лекарственных средств совместно с отделом биохимических методов очистки воды АН Украины (Ф.А.Конев, Т.П.Скубко, П.И.Гвоздяк) предложен оригинальный фильтр для получения апирогенной воды. Действие фильтра основано на удерживании микроорганизмов диэлектрическими материалами в электрическом поле, силовые линии которого направлены перпендикулярно к движению потока стерилизуемой жидкости.

Срок использования воды для инъекций регламентируется 24 часами с момента получения, при условии ее хранения в асептических условиях. При более длительном хранении вода поглощает из воздуха углерода диоксид и кислород, может взаимодействовать с материалом используемой емкости, вызывая переход ионов тяжелых металлов, и является средой для размножения микроорганизмов. Поэтому наиболее предпочтительным является использование свежеприготовленной воды, которую иногда непосредственно после дистилляции кипятят в течение 30 минут.

Более надежное хранение гарантируется специальными системами, выполненными из инертного материала, в которых вода находится при высокой температуре и в постоянном движении.

Неводные растворители

Для приготовления инъекционных лекарственных форм, кроме воды для инъекций, используют также неводные растворители. Применение этих растворителей позволяет получить растворы из нерастворимых или труднорастворимых в воде веществ, устранить гидролиз, получить растворы лекарственных веществ пролонгированного действия. Неводные растворители обладают различной растворяющей способностью, антигидролизными, стабилизирующими и бактерицидными свойствами. Однако далеко не все неводные растворители могут быть использованы для получения стерильных растворов вследствии фармакологической активности, токсичности, иногда гемолитического действия. В связи с этим к неводным растворителям предъявляются следующие требования: они не должны обладать острой и хронической токсичностью, вызывать местное раздражающее действие; должны обладать высокой растворяющей способностью с лекарственными веществами; должны быть химически и биологически совместимы; быть устойчивыми при стерилизации; иметь низкую вязкость. Кроме того, температура кипения должна быть не более 100°С, температура замерзания – не выше +5°С.

По химической природе неводные растворители делятся на несколько групп: жирные масла, одноатомные и многоатомные спирты, простые и сложные эфиры, амиды, сульфоны и сульфоксиды.

Для приготовления инъекционных растворов применяются неводные растворители, как индивидуальные так и смешанные: водно-глицериновые, водно-пропиленовые, спирто-водно- глицериновые и др.

Весьма широко применяются смеси жирных масел с бензилбензоатом, этилолеатом. Смешанные растворители обладают большей растворяющей способностью, чем каждый растворитель в отдельности. Такое явление называется сорастворением, а растворители – сорастворителями. В настоящее время сорастворители широко используются для получения инъекционных растворов труднорастворимых веществ.

Неводные растворители применяются для приготовления инъекционных лекарственных форм, содержащих гормоны, витамины, антибиотики, камфору, барбитураты, серу, соли ртути и др.

Масла растительные. Масла растительные являются неводными растворителями, применяемыми для приготовления инъекционных препаратов, и после воды являются самыми распространенными растворителями.

Растительные масла представляют собой эфиры ненасыщенных жирных кислот, смеси фосфатидов, свободных жирных кислот и др. веществ. Жирное масло содержит липазы, которые в присутствии малейшего количества воды вызывают омыление масла с образованием свободных жирных кислот, поэтому масла должны быть полностью обезвожены. Образующиеся продукты могут взаимодействовать со многими лекарственными и вспомогательными веществами, изменяя их свойства, кроме того кислые масла раздражают нервные окончания и могут вызвать болевые ощущения.

Это прозрачные слабо окрашенные маслянистые жидкости, маловязкие, без запаха или со слабым запахом, нерастворимые в воде, малорастворимые в спирте, легкорастворимые в эфире, хлороформе, петролейном эфире. В соответствии с требованиями ГФ ХI масла для стерильных растворов должны быть получены методом холодного прессования из свежих семян.

При анализе жирных масел определяют их цвет, вкус, запах, растворимость и числовые показатели. Жирные масла не должны содержать белка и минеральных примесей, иметь кислотное число не более 2, 5; содержание мыла в них должно составлять не более 0, 001% и т.д.

К недостаткам масляных растворов следует отнести их относительно высокую вязкость, болезненность инъекций, плохое рассасывание и возможность образования гранулем в месте введения. Для уменьшения вязкости в некоторых случаях добавляют этиловый или этилгликолевый эфир. Растворимость некоторых веществ в маслах увеличивают путем добавления сорастворителей или солюбилизаторов (бензилового спирта, бензилбензоата), которые одновременно повышают и стабильность масляных растворов.

В основном жирные масла применяют для внутримышечных инъекций и довольно редко – для подкожных.

Наиболее широко используется масло персиковое, миндальное, оливковое, подсолнечное, соевое и другие, которые должны быть рафинированными и дезодорированы. Персиковое масло применяется для приготовления инъекционных растворов витаминов (эргокальциферола, ретинола ацетата), гормонов (прогестерона, синэстрола, тестостерона пропионата т др.), камфоры, кризанола, а также взвесей (бийохинола).

Менее распространенным является масло оливковое, которое применяется для изготовления 20% раствора камфоры и 2% раствора синэстрола.

Все масла, предназначенные для приготовления инъекционных растворов необходимо подвергать предварительной стерилизации при температуре 120°С в течение 2 ч.

Спирты одно- и многоатомные. Одноатомные и многоатомные спирты применяются в качестве неводных растворителей во многих странах мира. Они смешиваются с водой, менее вязки, чем масла, и обладают способностью растворять многие лекарственные субстанции.

Из одноатомных спиртов наибольшее распространение получил этиловый спирт, из многоатомных пропиленгликоль, глицерин и полиэтиленгликоль.

Этиловый спирт при подкожном введении вызывает боль, а затем анестезию; кроме того он обладает собственным фармакологическим действием, поэтому и не может применяться в неразбавленном состоянии. Ввиду хорошей растворимости в нем различных органических веществ этиловый спирт часто применяется в качестве компонента многих растворов для инъекций. В качестве сорастворителя в смеси с водой он применяется для получения инъекционных растворов гидрокортизона, ряда сердечных препаратов: дигитоксина (50% спирта), мефеназина (25% спирта), дигоксина (10% спирта), и др.

Этиловый спирт используется как сорастворитель и консервант в концентрации от 2 до 30 % при изготовлении растворов сердечных гликозидов: конваллятоксина, целанида, эризимина, и строфантина К. Этиловый спирт включен в состав смешанных растворителей (используемых для приготовления инъекционных растворов) в Международную фармакопею 2-го издания и фармакопеи ряда зарубежных стран.

Этиловый спирт может применятся в качестве так называемого промежуточного растворителя. Этот технологический прием используется для приготовления растворов некоторых противоопухолевых препаратов, нерастворимых ни в воде, ни в маслах. С этой целью препараты растворяют в минимальном количестве этилового спирта, смешивают с оливковым маслом (получается эмульсия), затем спирт отгоняется под вакуумом и получается масляный раствор.

При изготовлении некоторых растворов для инъекций используется бензиловый спирт в концентрации 1-10% в качестве сорастворителя. С этой же целью в технологии инъекционных растворов используется и пропиленгликоль (в смеси с водой и добавкой этилового или бензилового спирта) Он является хорошим растворителем для сульфаниламидов, барбитуратов, антибиотиков и других лекарственных веществ. Его используют при получении микрокристаллической суспензии гидрокортизона ацетата 2, 5%.

Как солюбилизатор и стабилизатор рекомендован спирт поливиниловый для получения некоторых водных суспензий.

Пропиленгликоль (пропандиол-1, 2) представляет собой прозрачную, бесцветную вязкую жидкость, поглощающую влагу из воздуха.

Пропиленгликоль является хорошим растворителем для сульфамидов, барбитуратов, витаминов А и D, антибиотиков, анестезина, алкалоидов в форме оснований и многих других лекарственных веществ.

Пропиленгликоль как растворитель самостоятельно применяется ограниченно, например, в препаратах хинидина. Чаще всего используют в вице 40-70% водных растворов, а также в смеси с другими сорастворитедями (этиловым спиртом, этаноламином, полиэтиленгликолями).

Растворы, содержащие до 50% пропиленгликоля, используются для внутривенных, свыше 50% для внутримышечных инъекций.

Пропиленгликоль способствует пролонгированию действия ряда лекарственных препаратов.

Глицерин – прозрачная вязкая жидкость с высокой температурой кипения, смешивается с водой и спиртом. Он обладает высокой гигроскопичностью и может поглощать до 40% воды.

Глицерин в концентрации до 30% используется в качестве сорастворителя в смесях с водой или этиловым спиртом.

В инъекционных препаратах отечественного производства глицерин в концентрации до 10% применяется как сорастворитель в растворах целанида, випраксина, мезатона, фетанола, дибазола.

Для получения растворов легко гидролизующихся лекарственных веществ предложен сорбит и маннит в концентрации 60% в воде.

Полиэтиленгликоли (ПЭГ), получаемые путем поликонденсации окиси этилена и этиленгликоля, соответствуют общей формуле:

Н—(—ОСН2—СН2—)nОН,

где «n» может изменяться от 2 до 85 и выше. ПЭГ различаются по средней молекулярной массе. ПЭГ 200, 300, 400, 600 вязкие, бесцветные, прозрачные, умеренно гигроскопичные жидкости со слабым характерным запахом. Они нейтральны, физиологически индифферентны, растворимы в воде и спирте, устойчивы при хранении и не подвергаются гидролизу.

В качестве растворителей для парентеральных препаратов применяются низкомолекулярные поликонденсаты, находящиеся при нормальных условиях в жидком состоянии. Чаще всего используется полиэтиленоксид (ПЭО 400), как прекрасный растворитель сульфаниламидов, анестезина, камфоры, бензойной и салициловой кислот, фенобарбитала. Предложен также способ приготовления растворов антибиотиков в стерильном растворе ПЭО 400. ПЭО используется для получения растворов для инъекций производных сарколизина, обладающих выраженной противоопухолевой активностью.

ПЭГ обладает способностью растворять многие лекарственные вещества. В концентрации до 70% применяются для внутримышечных и внутривенных инъекций. Внутримышечное введение их легко переносится и растворители выводятся из организма больного в течение 24 ч, причем 77% удаляется в течение 12 ч.

ПЭГ 200 предложено использовать для приготовления растворов ванкомицина, фенобарбитала, аскорбината натрия.

ПЭГ 400 используется в препаратах дигоксин, биомицин, левомицетин, пенициллин и др.

Простые и сложные эфиры. Эфиры являются менее вязкими, чем масла, и обладают хорошей растворяющей способностью, все чаще используются при приготовлении инъекционных растворов. К ним относятся этиловые эфиры олеиновой, линолевой, линоленовой, кислот, октиловый эфир левуленовой кислоты и др.

Бензилбензоат. Бензилбензоат (бензиловый эфир бензойной кислоты) представляет собой бесцветную маслянистую жидкость, практически нерастворим в воде, смешивается с этиловым спиртом. Значительно увеличивает растворимость в маслах труднорастворимых веществ из класса стероидных гормонов. Кроме того, бензилбензоат предотвращает кристаллизацию веществ из масел в процессе хранения. Смеси бензилбензоата с персиковым маслом (10-50%) не оказывают токсического действия. В ГФ Х включены следующие масляные растворы гормональных препаратов с добавлением 20-30% бензилбензоата: растворы прогестерона, оксипрогестерона, капроната и тестостерона пропионата.

Гликофурол – полиэтиленгликолевый эфир тетрагидрофурфурилового спирта. Представляет собой бесцветную жидкость, растворимую в метаноле, этаноле и глицерине; смешивается с водой в любом соотношении.

Используют гликофурол в растворе ацетилхолина и роникола.

Изопропилмиристат как растворитель состоит из изопропилмиристата и изопропиловых эфиров других насыщенных кислот. Он используется в качестве индифферентной основы при введении эстрогенов.

Этилолеат – синтетический сложный эфир. Представляет собой продукт этерификации олеиновой кислоты этиловым спиртом. Светло-желтая маслянистая жидкость, нерастворимая в воде; смешивается со спиртом, эфиром, маслами.

Применение этилолеата вместо масел дает возможность исключить ряд технологических операций в процессе приготовления растворов: предварительное обезвоживание масел и их стерилизацию, а также упростить операции фильтрации и ампулирования. Он имеет ряд преимуществ по сравнению с маслами: смешивается со спиртом, эфиром, не вызывает побочных явлений, обладает постоянным химическим составом и меньшей вязкостью (так, вязкость оливкового масла при температуре 200°С равна 80, 3 сП, вязкость этилолеата при той же температуре составляет всего 6, 2 сП), а также большей стабильностью при тепловой стерилизации (1500°С в течение 1 часа). Благодаря меньшей по сравнению с растительными маслами вязкости, этилолеат быстрее адсорбируется тканями, является более удобным растворителем.

Этилолеат хорошо растворяет салициловую кислоту, анестезин, пенициллин, ряд других антибиотиков, холестерин, витамины, стероидные гормоны, камфору и др. Установлено, что при внутримышечном введении препарата на этилолеате в отличие от растительных масел наблюдается его быстрое и полное рассасывание.

Однако, наличие двойной связи в химическом строении этилолеата способствует его быстрому окислению. Для предотвращения этого процесса предложено добавлять к нему антиоксиданты ( α -токоферол, бутилокситолуол и др.) и проводить стерилизацию в атмосфере инертного газа.

Как растворитель для инъекций этилолеат включен в Международную фармакопею 2-го издания, по которой разрешается использовать этилолеат вместо растительного масла. Этилолеат применяется также как добавка к масляным растворам для увеличения растворимости и понижения их вязкости.

Диоксаны и диоксоланы представляют собой продукты взаимодействия глицерина с карбонильными соединениями в присутствии де-гидратирующето агента. Наименее токсичный представитель этой группы 2, 2-диметил-4-метанол-1, 3-диоксолан. Это соединение известно под названием солькеталь, глицерол-диметилкеталь и др.

Солькеталь – бесцветная жидкость, стабильная при хранении, устойчивая к действию щелочей, смешивается с водой, спиртом и другими органическими растворителями. В присутствии растворов сильных кислот гидролизуется с образованием ацетона и глицерина.

Соединение относительно безвредно, не раздражает оболочки и ткани. Солькеталъ используется при производстве парентеральных растворов тетрациклина.

Глицероформаль является продуктом конденсации глицерина с формальдегидом и представляет собой смесь 25% З-окси-метил-1, 3-диоксолана и 75% 5-оксидиоксолана. Глицероформалъ – бесцветное вещество с невысокой вязкостью, неограниченно смешивается с водой, малотоксичен.

Амиды. Растворители, относящиеся к группе амидов, в препаратах для инъекций применяются в концентрации от 5 до 50%, часто в сочетании с пропиленгликолем, этаноламином.

N, N-диметилацетамид представляет собой прозрачную нейтральную жидкость с температурой кипения 165, 5º С и плотностью 0, 493. Для приготовления инъекционных растворов левомицетина, окситетрациклина, тетрациклина используют 50% водный раствор диметилацетамида. Он обладает противовоспалительным действием.

N-β -оксиэтиллактамид карбоксамид молочной кислоты представляет собой бесцветную прозрачную сиропообразную жидкость, смешивающуюся с водой. Применяется в виде 50% водных растворов, обладает стабильностью, не раздражает ткани. Применяется в инъекционных растворах тетрациклина, причем действие препарата пролонгируется на сутки.

Сульфоксиды и сульфоны. Высокую растворяющую способность имеют диметилсульфоксид и сульфолан. Они обладают незначительной токсичностью, смешиваются со многими растворителями. Предложены для приготовления многих инъекционных препаратов.

Среди растворителей класса сульфоксидов и сульфонов наибольший интерес представляют диметилсульфоксид и сульфолан.

Диметилсульфоксид очень гигроскопичная жидкость; при 20º С поглощает около 70% воды, малотоксичен.

Сульфолан – тетрагидротиофен-1, 1-диоксид, тетраметиленсульфон, высококипящий органический растворитель с большой диэлектрической проницаемостью.


Поделиться:



Последнее изменение этой страницы: 2019-04-09; Просмотров: 268; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.033 с.)
Главная | Случайная страница | Обратная связь