Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Максимальная сила трения покоя. А также сила трения скольжения не зависит от площади соприкосновения тел и пропорциональна силе нормального давления



Законы Ньютона

1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.

2-й: В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

где — ускорение тела, — силы, приложенные к материальной точке, а — её масса, или

3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению

  1. Силы упругости.

Сила, возникающая в результате деформации тела и направленная в противоположную сторону перемещения частиц тела при деформации,называется силой упругости.

Связь между силой упругости и удлинением тела при деформации была установлена английским ученым Гуком (1635-1703г.) в виде

,

- коэффициент жесткости, зависящий от формы, размеров и материала тела, [ ]= н/м. Упругие силы – электромагнитного происхождения.

  1. Силы трения.

Силы трения зависят от скорости движения тел относительно друг друга. Силы трения называются внешними, если они действуют между различными телами.Если же трение происходит между различными частями одного и того же тела, например между различными слоями жидкости или газа, скорости которых меняются непрерывно от слоя к слою,то трение называется внутренним.

Трение между поверхностью тела и окружающей его жидкой или газовой прослойкой, а также трение между различными слоями такой среды называется вязким.

Трение между телами без смазки называется сухим. Различают трение скольжения и качения.

Рассмотрим законы сухого трения. Такое трение возникает не только при скольжении тел, но и при покое.

Брусок не приходит в движение, пока не достигнет . Значит уравновешивалась какой то силой, направленной противоположно, которая и есть сила трения. Сила трения автоматически принимает значение внешней силы, пока тело не движется. Максимальное значение силы трения покоя равно . Если внешняя сила , то тело начинает двигаться, ускорение будет определяться результирующей сил и скольжения.

Опытным путем Кулоном был установлен закон сухого трения Кулона:

Механические колебания

Автоколебания — свободные колебания, поддерживаемые внеш­ним источником энергии, включение которого в нужные моменты времени осуществляет сама колеблющаяся система (например, колебания маятника часов).

Параметрические колебания — это колебания, в процессе которых происходит периодическое изменение какого-либо параметра системы (например, раскачивание качелей: приседая в крайних положениях и выпрямляясь в среднем положении, человек, находящийся на качелях, изменяет момент инерции качелей).

Различные по своей природе колебания обнаруживают много общего: они подчиняются одним и тем же закономерностям, описываются одними и теми же уравнениями, исследуются одними и теми же методами. Это дает возможность создать единую теорию колебаний.

Простейшими из периодических колебаний

являются гармонические колебания.

Гармонические колебания- это колебания, в процессе совершения которых значения физических величин изменяются с течением времени по закону синуса или косинуса. Большинство колебательных процессов описываются этим законом или может быть приставлено в виде суммы гармонических колебаний.

Возможно и другое «динамическое» определение гармонических колебании как процесса, совершаемого под действием упругой или «квазиупругой»

силы.

2. Периодическими называются колебания, при которых происходит точное повторение процесса через равные промежутки времени.

 

Периодом периодических колебаний называется минимальное время, через которое система возвращается в первоначальное

 

 

х — колеблющаяся величина (например, сила тока в цепи, состояние и начинается повторение процесса. Процесс, происходящий за один период колебаний, называется «одно полное колебание».

периодических колебаний называется число полных колебаний за единицу времени (1 секунду) — это может быть не целое число.

Т — период колебаний Период — время одного полного колебания.

 

Чтобы вычислить частоту v, надо разделить 1 секунду на время Т одного колебания (в секундах) и получится число колебаний за 1 секунду или координата точки) t — время

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, каксила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Принцип Гюйгенса-Френеля

Световая волна, возбуждаемая каким-либо источником света, может быть представлена как результат суперпозиции когерентных вторичных волн, «излуча­емых» фиктивными источниками.

Дифракционные явления присущи всем волновым процессам, но особенно отчетливо проявляются лишь в тех случаях, когда длины волн излучений сопоставимы с размерами препятствий. Так, звуко­вые волны хорошо слышны за углом дома, т.е. звуковая волна его огибает. Для наблюдения же дифракции световых волн необходимо создание специальных условий. Это обусловлено малостью длин све­товых волн (λ<1мкм).

21. Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом. Диапазон звуковых частот лежит в пределах приблизительно от 20 Гц до 20 кГц. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой более 20 кГц – ультразвуком. Волны звукового диапазона могут распространяться не только в газе, но и в жидкости (продольные волны) и в твердом теле (продольные и поперечные волны). Однако волны в газообразной среде – среде нашего обитания – представляют особый интерес. Изучением звуковых явлений занимается раздел физики, который называют акустикой.

Громкость звука

Громкость звука - качество слухового ощущения , которое позволяет располагать все звуки по шкале от тихих до громких.

Сон - единица громкости звука.

1 сон - эта примерная громкость приглушенного разговора , а громкость самолета - 264 сон. Звуки, обладающие еще большей громкостью, будут вызывать болевые ощущения.

Громкость звука зависит от амплитуды колебаний, чем она больше , тем звук будет громче.

Уровень звукового давления измеряется в белах(Б) или в децибелах(Д) - 1/10 часть бела(Б) ,и равен уровню громкости звука, который выражается в фонах.

Громкость выше 180 дБ может вызвать разрыв барабанной перепонки.

Шум, громкий звук, неприятный звук плохо влияют на здоровье человека это происходит из-за того, что нарушен порядк звуков разной громкости, высоты тона и тембра.

Шум - это звуки, в которых присутствуют колебания всевозможных частот.

Чтобы было звуковое ощущение, звуковая волна должна быть минимальной интенсивности , но если интенсивность будет превышать норму, то звук будет не слышен и будет вызывать только болевые ощущения.

Акустика - раздел физики , который изучает звуковые явления.

Звуки бывают двух видов: естественные и искусственные.

Естественные - голос , шум моря, звуки животных и т.д

Искусственные - струна , колокол , дудочка.

Высота тона — качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. Чем больше частота, тем выше тон звука. При одной высоте тона звуки, издаваемые, например, скрипкой и пианино, отличаются тембром.

Рис.2

Рис.3

Согласно второму закону Ньютона

учитывая, что F/P=tgα, можно записать

т.е. угол отклонения шарика зависит от угловой скорости и от его удаления от оси вращения диска.

Относительно неинерциальной системы отсчета, связанной с вращающимся диском, шарик находится в покое.

Это возможно в том случае, если сила (8) уравновешена силой инерции , называемой центробежной силой инерции:

Пример 2. Рассмотрим диск, вращающийся вокруг перпендикулярной к нему вертикальной оси z с угловой скоростью ω. Вместе с диском вращается надетый на тонкую спицу шарик, соединенный с центром диска пружиной (рис. 4).

Рис.4

Шарик занимает на стержне некоторое положение, при котором сила натяжения пружины (она будет центростремительной) оказывается равной произведению массы шарика m на его ускорение:

где – нормальное ускорение на шарике; r – расстояние от оси вращения до центра шарика.

Относительно системы отсчета, связанной с диском, шарик покоится. Это формально можно объяснить тем, что кроме силы упругости на шарик действует сила инерции, модуль которой равен силе упругости (7):

Сила инерции направлена вдоль радиуса от центра диска. Силу инерции (8), возникающую в равномерно вращающейся системе отсчета, называют центробежной силой инерции. Эта сила действует на тело во вращающейся системе отсчета, независимо от того, покоится тело в этой системе или движется относительно нее со скоростью . Если положение тела во вращающейся системе отсчета характеризовать радиус-вектором , то центробежную силу можно представить в виде

где – компонента радиус-вектора, направленная перпендикулярно оси вращения.

Центробежные силы, как и всякие силы инерции, существуют только в ускоренно движущихся (вращающихся) системах отсчета и исчезают при переходе к инерциальным системам отсчета.

Действию центробежной силы подвергается, например, пассажир в движущемся автобусе на поворотах. Если в центробежной машине подвесить на нитях несколько шариков и привести машину в быстрое вращение, то центробежные силы инерции отклонят шарики от оси вращения. Угол отклонения тем больше, чем дальше шарик отстоит от оси. Центробежные силы используются в центробежных сушилках для отжима белья, в сепараторах для отделения сливок от молока, в центробежных насосах, центробежных регуляторах и т.д. Их надо учитывать при проектировании быстровращающихся деталей механизмов.

25. Влияние вращения Земли на движение тел по земной поверхности.

Представим себе, что наблюдения движения тела производятся во вращающейся системе координат. Мимо наблюдателя движется прямолинейно и равномерно какое-либо тело. В выбранной

неинерциальной системе отсчета траектория тела будет криволинейной. Французский ученый Кориолис вычислением показал, что по отношению к системе, вращающейся с угловой скоростью , тело, движущееся прямолинейно и равномерно со скоростью имеет ускорение, равное где — угол между осью вращения и направлением прямолинейного движения. При этом вектор ускорения направлен перпендикулярно к плоскости, проходящей через ось вращения и направление скорости. Для выбора из двух возможных направлений ускорения одного можно пользоваться следующим правилом: если смотреть вдоль оси вращения так, чтобы видеть вращение против часовой стрелки, и поставить левую руку ладонью вниз, установив пальцы вдоль прямолинейного движения, то направление большого пальца покажет направление ускорения (рис. 14).

Рис. 14.

Кориолисово ускорение действует на все тела, движущиеся по земной поверхности. Если смотреть на ось земного шара со стороны северного полюса, то вращение представляется против часовой стрелки. Следовательно, любое тело, движущееся в северном полушарии прямолинейно по отношению к инерциальной системе, отклоняется вправо по ходу движения (влево в южном полушарии) для земного наблюдателя. Это отклонение может быть большим или меньшим в зависимости от направления движения по отношению к оси, а также от линейной скорости движения.

Отклонения тел могут происходить как в горизонтальной, так и в вертикальной (по отношению к поверхности Земли) плоскостях. Кориолисово ускорение направлено перпендикулярно к земной оси; поэтому отклонения, происходящие в горизонтальной плоскости, всего больше на полюсе и равны нулю на экваторе. Обратное положение имеет место для отклонений от вертикальной плоскости. Отклонения в этих двух плоскостях характеризуются соответствующими проекциями вектора ускорения. Так, проекция ускорения тела на горизонтальную плоскость равна

где широта. В северном полушарии эта проекция направлена вправо по движению.

Отклонение движущихся в горизонтальной плоскости тел от прямолинейного пути сказывается на размытии реками правых

берегов в северном и левых берегов (по ходу движения) в южном полушарии. По этой же причине в северном полушарии реки обходят препятствия с правой (в южном — с левой) стороны.

Воздушные массы, притекающие в область низкого давления, отклоняются от радиального направления вправо в северном (влево в южном) полушарии и образуют циклоны. Таким образом, циклоны в северном полушарии перемещают воздушные массы против часовой стрелки, в южном — наоборот.

Наличие вертикального отклонения приводит к тому, что падающее тело движется не строго по вертикали, а отклоняется с запада на восток (Земля вращается с запада на восток, т. е. против часовой стрелки, если смотреть со стороны северного полюса).

Примеры. 1. Подсчитаем максимальное отклонение от прямолинейного пути обычного артиллерийского снаряда. Отклонение будет максимально на полюсе и для всех направлений выстрела Беря скорость полета снаряда получим Это ускорение примерно в 70 раз меньше ускорения силы тяжести. Отклонение снаряда от прямолинейного пути может, как мы видим, достигать величины порядка нескольких сантиметров.

2. Пусть река течет с севера на юг (в северном полушарии) со скоростью При этом вода переходит из областей с малой линейной скоростью вращения поверхности Земли в области с большей линейной скоростью. Это увеличение скорости движения (направленного с запада на восток вместе с берегами реки) характеризуется ускорением Кориолиса и достигается за счет воздействия правого берега реки на массы воды. Вычислим ускорение Кориолиса для широты

Таким образом, на каждую тонну воды правый берег давит с силой

Обрывистые правые берега Волги, Дона и других крупных рек северного полушария иллюстрируют приведенный расчет.

Опыт Фуко: доказательство вращения Земли    
Жан Бернард Леон Фуко (1819–1868)

Тот факт, что Земля вращается вокруг своей оси, сегодня известен каждому школьнику. Однако не всегда люди были убеждены в этом: обнаружить вращение Земли, находясь на ее поверхности, достаточно трудно. Конечно, можно догадываться, что суточное движение небесных тел по небесной сфере – это и есть проявление вращения Земли. Но видится нам это явление именно как движение Солнца и звезд по небу.

В середине XIX века Жан Бернард Леон Фуко смог провести опыт, который демонстрирует вращение Земли достаточно наглядно. Опыт этот был проведен неоднократно, а публично сам экспериментатор представил его в 1851 году в здании Пантеона в Париже.

Рис. 1. Маятник Фуко в парижском Пантеоне

Здание Парижского Пантеона в центре венчает громадный купол, к которому была прикреплена стальная проволока длиной 67 м. К этой проволоке подвесили массивный металлический шар. По разным источникам, масса шара составляла от 25 до 28 кг. Проволока крепилась к куполу таким образом, чтобы получившийся маятник мог качаться в любой плоскости.

Маятник совершал колебания над круглым постаментом диаметром 6 м, по краю которого был насыпан валик из песка. При каждом качании маятника острый стержень, укрепленный на шаре снизу, оставлял на валике отметку, сметая с ограждения песок.

Рис. 2. Плоскость качаний маятника Фуко постепенно поворачивается относительно земного наблюдателя

Для того, чтобы исключить влияние подвеса на маятник Фуко, применяют специальные подвесы (рис. 4). А для того, чтобы избежать бокового толчка (то есть, чтобы маятник качался строго в плоскости), шар отводят в сторону, привязывают к стене, а затем пережигают веревку.

Рис. 3. Подвес маятника Фуко и начало его движения

Период колебаний маятника, как известно, может быть рассчитан по формуле:

Подставляя в эту формулу длину маятника l = 67 м и значение ускорения свободного падения g = 9,8 м/с2, получаем, что период колебаний маятника в опыте Фуко составлял T ≈ 16,4 с.

По прошествии каждого периода новая отметка, производимая острием стержня на песке, оказывалась примерно в 3 мм от предыдущей. За первый час наблюдений плоскость качаний маятника повернулась на угол около 11° по часовой стрелке. Полный же оборот плоскость маятника совершила примерно за 32 часа.

Опыт Фуко производил огромное впечатление на наблюдавших его людей, которые будто бы непосредственно ощущали движение земного шара. Среди зрителей, наблюдавших опыт, был и Л. Бонапарт, через год провозглашенный императором Франции Наполеоном III. За проведение опыта с маятником Фуко был удостоен Ордена Почетного легиона – высшей награды Франции.

В России маятник Фуко длиной 98 м был установлен в Исакиевском соборе в Ленинграде. Обычно показывался такой удивительный эксперимент – устанавливался на полу спичечный коробок чуть поодаль от плоскости вращения маятника. Пока гид рассказывал о маятнике, плоскость его вращения поворачивалась и стержень, укрепленный на шаре, сбивал коробок.

В основу опыта был положен уже известный в то время экспериментальный факт: плоскость качания маятника на нити сохраняется независимо от вращения основания, к которому подвешен маятник. Маятник стремится сохранить параметры движения в инерциальной системе отсчета, плоскость которой неподвижна относительно звезд. Если поместить маятник Фуко на полюсе, то при вращении Земли плоскость маятника будет оставаться неизменной, и наблюдатели, вращающиеся вместе с планетой, должны видеть, как плоскость качаний маятника поворачивается без воздействия на него каких-либо сил. Таким образом, период вращения маятника на полюсе равен периоду обращения Земли вокруг своей оси – 24 часам. На других широтах период будет несколько больше, т. к. на маятник действуют силы инерции, возникающие во вращающихся системах – силы Кориолиса. На экваторе плоскость маятника вращаться не будет – период равен бесконечности.

26. Гидростатика — это частный случай гидроаэромеханики, где изучается равновесие жидкостей и газов, т. е. их скорость равна нулю.

Виды жидкостей
Несжимаемая жидкость — это жидкость или газ, где зависимость плотности от давления не имеет никакого значения.
Сжимаемая жидкость — это газ, где зависимость плотности от давления имеет большое значение.
Идеальная жидкость — это жидкость, где нет внутреннего трения.
Вязкая жидкость — это жидкость, где присутствует внутреннее трение.
Баротропная жидкость — это жидкость, где плотность имеет зависимость только от давления.

Давление — это физическая величина, которая характеризует силу, перпендикулярную поверхности, и ее действие на каждую единицу этой поверхности:

В Международной системе СИ единица давления — это паскаль (Па).

Гидростатическое давление — это давление, которое создается жидкостью, которая при воздействии силы тяжести, остается в равновесии.
Гидростатическое давление определяется следующей формулой:
, где h — высота жидкости, p — плотность жидкости.

Давление жидкости на высоте h определяется формулой:

Закон Архимеда: выталкивающая сила, которая действует на тело, погруженное жидкость или газ, равна весу жидкости в объеме погруженного тела, эта сила направлена вверх и приложена к центру тяжести вытесненного объема жидкости или газа.

Агрегатные состояния вещества
Фазовый переход, или превращение — это переход вещества из одного агрегатного состояния в другое. При этом фазовый переход первого рода имеет скачкообразное изменение внутренней энергии и плотности, это связано с выделением или поглощением теплоты фазового перехода, а фазовый переход второго рода не обнаруживает скачкообразное изменение внутренней энергии и плотности, теплота фазового перехода равна нулю, при этом переходе скачкообразно меняются теплоемкость и термодинамические коэффициенты, которые являются характеристиками относительного изменения объема системы.

Жидкость — это тела, которые имеют определенный объем, но не имеют упругости формы.

Поверхностное натяжение — это свойство, обусловленное сила- ми притяжения между молекулами.

Сила поверхностного натяжения — это сила, действующая вдоль поверхности жидкости перпендикулярно линии, которая ограничивает эту поверхность.

Коэффициент поверхностного натяжения — это физическая величина, определяемая отношением модуля силы поверхностного натяжения, которая оказывает воздействие на границу поверхностного слоя длиной, к этой длине:

Смачивание — это процесс, появляющийся на границе соприкосновения жидкостей с твердыми телами, другими жидкостями и газами, которое определено взаимодействием молекул на границе контактирующих сред. Капиллярные явления — это процессы, определенные поверхностным натяжением и совершающиеся в тонких узких трубках, т. е. (капиллярах).
Высота подъема или опускания жидкости в капилляре обратно пропорциональна радиусу капилляра и плотности жидкости, определяется:

Парообразование — это переход вещества из жидкого состоя- ния в газообразное.
Существуют два типа парообразования:

  • испарение;
  • кипение.

Испарение — это явление перехода вещества из жидкого состояния в газообразное, совершающееся со свободной поверхности жидкости при любой температуре.

Пар (газ) — это совокупность молекул, которые вылетают из жидкости.

Факторы, от которых зависит испарение:

  1. если температура повышается, то скорость испарения увеличивается;
  2. если создавшийся пар сдувается потоком воздуха или откачивается, то скорость испарения возрастает;
  3. если площадь свободной поверхности жидкости больше данного объема, то испарение происходит быстрее.

Теплота испарения или парообразования — это количество теплоты, которую нужно сообщить жидкости при данной температуре и давлении, чтобы перевести ее в пар той же температуры и при том же давлении.

Кипение — это интенсивное испарение жидкости, совершающееся не только с ее свободной поверхности, но и во всем объеме жидкости внутри образующихся при этом пузырьков пара.
Кипение жидкости начинается при такой температуре, когда выполняется условие:

Теплота испарения (теплота парообразования) — это количество теплоты, которое нужно сообщить веществу, с тем чтобы перевести его из жидкого состояния в газообразное.

Удельная теплота парообразования — это количество теплоты, которое необходимо для превращения вещества единичной массы из жидкого состояния в пар при температуре кипения.

Конденсация — это переход вещества вследствие его охлаждения или сжатия из газообразного состояния в жидкое или твердое.

Разбавленный раствор — это смесь нескольких веществ, в которой одно из веществ является преобладающим, а остальные являются малыми примесями.

Явление осмоса — это проникновение растворителя в раствор через пористую перегородку, плотную для растворенного вещества и отделяющую раствор от чистой жидкости.

Сверхтекучесть — это процесс практически полного отсутствия вязкости, обнаруженного у жидкого гелия.
Твердые тела бывают двух типов:

  • кристаллические;
  • аморфные.

Кристаллы — это твердые тела, обладающие правильным периодическим расположением собирающих их частиц.
Типы кристаллов:

  • металлы, в которых валентные электроны оставляют атомы, делаются коллективизированными, образуя электронный газ в металлах;
  • ионные кристаллы, которые характеризуются ионной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами;
  • валентные кристаллы, характеризуются гомеополярной связью;
  • молекулярные кристаллы в узлах кристаллической решетки которых находятся молекулы;
  • кристаллы с водородными связями — это формирование связи, которое происходит так, что атом водорода передает свой электрон одному из атомов молекулы, водородная связь создастся в основном за счет ионного взаимодействия с образующимся ионом водорода.

Тепловое расширение — это изменение линейных размеров и объемов тел, которые возникают за счет нагревания.

Теплопроводность — это вид теплообмена, который в результате приводит к выравниванию температур различных частей тела, в процессе которого происходит передача энергии от более нагретых частей к менее нагретым.

Коэффициент электронной теплопроводности для металлов, когда происходит классическое приближение идеального электронного газа:

теплового движения электронов.

Теплота плавления — это количество теплоты, необходимое для вещества, чтобы перевести его из твердого кристаллического состояния в жидкое.

Кристаллизация — это явление перехода вещества из жидкого состояния в твердое кристаллическое.

Кристаллизация — процесс, обратный плавлению, который происходит при постоянной температуре, равной температуре плавления.

Адсорбция — это концентрирование одного из веществ, совершающееся в смежном слое у поверхности раздела двух фаз. Десорбция — это явление, обратное адсорбции, абсорбция характе- ризуется как объемное поглощение вещества.

Жидкие кристаллы — это состояние отдельных органических веществ, которые находятся в процессе перехода из жидкого состояния в твердое кристаллическое не сразу, а через промежуточные состояния, которым свойственны свойства как жидкостей, так и кристаллов.

Аморфные вещества — это вещества, не имеющие в конденси- рованном состоянии кристаллическое строение, но обладающие упругостью формы.

Структурное стеклование — это перевод аморфного вещества из жидкого состояния в твердое, если осуществляется изменение температуры или давления.

Размягчение — это обратный стеклованию процесс.

Полимеры — это вещества, молекулы которых построены из большого числа повторяющихся групп Равновесие тела в покоящейся жидкости

Тело, погруженное (полностью или частично) в жидкость, испытывает со стороны жидкости суммарное давление, направленное снизу вверх и равное весу жидкости в объеме погруженной части тела. Pвыт = ρжgVпогр

Для однородного тела плавающего на поверхности справедливо соотношение

где: V - объем плавающего тела; ρm - плотность тела.

Существующая теория плавающего тела довольно обширна, поэтому мы ограничимся рассмотрением лишь гидравлической сущности этой теории.

Способность плавающего тела, выведенного из состояния равновесия, вновь возвращаться в это состояние называетсяостойчивостью. Вес жидкости, взятой в объеме погруженной части судна называют водоизмещением, а точку приложения равнодействующей давления (т.е. центр давления) - центром водоизмещения. При нормальном положении судна центр тяжестиС и центр водоизмещения d лежат на одной вертикальной прямой O'-O", представляющей ось симметрии судна и называемой осью плавания (рис.2.5).

Пусть под влиянием внешних сил судно наклонилось на некоторый угол α, часть судна KLM вышла из жидкости, а часть K'L'M', наоборот, погрузилось в нее. При этом получили новое положении центра водоизмещения d'. Приложим к точке d' подъемную силу R и линию ее действия продолжим до пересечения с осью симметрии O'-O". Полученная точка m называется метацентром, а отрезок mC = h называется метацентрической высотой. Будем считать h положительным, если точка m лежит выше точки C, и отрицательным - в противном случае.

Рис. 2.5. Поперечный профиль судна

Теперь рассмотрим условия равновесия судна:

1)если h > 0, то судно возвращается в первоначальное положение; 2)если h = 0, то это случай безразличного равновесия; 3) еслиh<0, то это случай неостойчивого равновесия, при котором продолжается дальнейшее опрокидывание судна.

Следовательно, чем ниже расположен центр тяжести и, чем больше метацентрическая высота, темЗакон Паскаля. Давление, приложенное к жидкости (или газу), находящейся в ограниченном объёме, передаётся во все точки внутри объёма без изменения. Например, если несжимаемая жидкость плотностью r помещена в атмосферу, то давление на глубине h согласно закону Паскаля будет равно P P gh = +r A , где PA – атмосферное давление. На законе Паскаля основано действие гидравлического подъёмника (рис. 4). Подъёмник состоит из двух сообщающихся сосудов, залитых несжимаемой жидкостью (обычно маслом). Площади сечения сосудов соответственно равны S1 и S2 ( S S 1 2 << ). Поднимаемый груз кладут на широкий поршень, а силу прикладывают к узкому. Посчитаем силу, необходимую для того, чтобы удерживать груз массы M неподвижно. Если поршни находятся на одном уровне, то давления под ними должны быть A B h Вакуум Рис.3. Принципиальная схема жидкостного барометра. Mg F M S1 S2 Рис. 4. Принцип работы гидравлического подъёмника. одинаковы: P P 1 2 = . Но P F S 1 1 = , а P Mg S 2 2 = . Отсюда получаем, что F Mg S S = 1 2 . Т.к. S S 1 2 << , то и F << Mg . Заметим, однако, что так как объем жидкости при подъёме груза не меняется, то для того, чтобы поднять груз на небольшую высоту, приходится поршень S1 опускать на значительную глубину. Важное замечание. Закон Паскаля не утверждает, что давление жидкости одинаково в каких-либо областях. Он утверждает, что если давление приложено к какой-то одной части жидкости, то оно возрастает на эту величину во всех местах в жидкости, т.е. передаётся жидкостью.. Закон Архимеда

Закон Архимеда формулируется следующим образом: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (или газа). Сила называется силой Архимеда:

где — плотностьжидкости (газа), — ускорение свободного падения, а — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плаваетна поверхности или равномерно движется вверх или вниз, то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена кцентру тяжестиэтого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давленийна примере прямоугольного тела.

где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и B, S — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.

Плавание тел

По закону Архимеда на тело, погруженное в жидкость, действует выталкивающая сила, направленная вертикально вверх,

где W— объем погруженной части тела.

Вес воды, вытесняемой телом, полностью или частично погру­женным в воду, называется водоизмещением.

Центр тяжести вытесненного объема жидкости называетсяцент­ром водоизмещения илицентром давления. При наклоне (крене) плавающего тела центр водо­измещения изменяет свое положение.

Линия, проходящая через центр тяжести тела и центр водоизмеще­ния в положении равновесия пер­пендикулярно свободной поверхности воды (плоскости плавания), явля­етсяосью плавания. В положении рав­новесия ось плавания вертикальна, при крене она наклонена к вертикали под углом крена.

Точку пересечения подъемной силы Р при наклонном положении тела с осью плавания принято называтьме­тацентром.Расстояние между цент­ром тяжести тела и метацентромMобозначается черезhм(метацентрическая высота). Чем выше расположен метацентр над центром тяжести тела, т. е. чем больше метацентрическая высота , тем больше остойчивость тела (способность из крена переходить в положение равновесия), так как момент пары сил , стремящийся восстановить равновесие тела, прямо пропорционален метацентрической высоте. Величина метацентрической высоты может быть определена по формуле

где — момент инерции площади плоскости плавания относительно продольной оси ;

W— водоизмещение тела;

е — расстояние между центром тяжести и центром водоизме­щения.

Если метацентр лежит ниже центра тяжести тела, т. е. метацентрическая высота отрицательна, то тело неостойчиво.

27. Гидродинамика – раздел гидравлики, изучающий законы движения жидкости и ее взаимодействия с неподвижными и подвижными поверхностями.

Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

В целях упрощения расчета вводится понятие струйчатой модели движения. Согласно этой модели поток состоит из отдельных элементарных струек, изучение которых в отдельности дает возможность понять закономерности потока в целом.

Основными уравнениями гидродинамики являются уравнение неразрывности (сплошности) и уравнение Бернулли.

Уравнение неразрывности есть уравнение постоянства расхода.

1. Для элементарной струйки

или

,

где U1, U2, U – скорости движения частиц жидкости в отдельных живых сечениях струйки; dw1, dw2, dw - площади живых сечений струйки.

2. Для потока

или

,

где V1, V2, V – средние скорости в живых сечениях; w1, w2, w - площади живых сечений потока.

Уравнение Бернулли является фундаментальным уравнением гидродинамики. Оно устанавливает связь между давлением, скоростью и положением жидкости в пространстве. С помощью этого уравнения решается большой круг инженерных задач.

Для упрощения изучения общих закономерностей, присущих особенно движущейся жидкости, ее часто представляют в виде несжимаемой среды, не обладающей внутренним трением. Такую жидкость называют идеальной.

Уравнение Бернулли для элементарной
струйки идеальной жидкости

Расчетная форма этого уравнения имеет вид

,

где Z – геометрический напор, или удельная потенциальная энергия положения; – пьезометрический напор, или удельная потенциальная энергия давления; – скоростной напор, или удельная кинетическая энергия.

Представим это уравнение графически для элементарной струйки переменного сечения (см рис.1)

Рис.1.

Это уравнение является уравнением закона сохранения энергии для движущейся жидкости. В этом заключается его физический смысл.

Уравнение Бернулли для элементарной
струйки реальной жидкости

При движении реальной жидкости, обладающей вязкостью, часть ее энергии затрачивается на преодоление сил трения. Эта энергия в виде тепла рассеивается в окружающую среду. Процесс этот необратим и в физике называется диссипацией. Диссипируемую энергию в гидравлике называют гидравлическими потерями.

Расчетную форму уравнения Бернулли для элементарной струйки реальной жидкости можно представить в виде

,

где hп – гидравлические потери.

График этого уравнения показан на рисунке 2.

Виды движения (течения) жидкости

Течение жидкости вообще может быть неустановившимся (нестационарным) или установившимся (стационарным).

Н еустановившееся движение– такое, при котором в любой точке потока скорость движения и давление с течением времени изменяются, т.е. u и P зависят не только от координат точки в потоке, но и от момента времени, в который определяются характеристики движения т.е.:

и .

Примером неустановившегося движения может являться вытекание жидкости из опорожняющегося сосуда, при котором уровень жидкости в сосуде постепенно меняется (уменьшается) по мере вытекания жидкости.

У становившееся движение – такое, при котором в любой точке потока скорость движения и давление с течением времени не изменяются, т.е. u и P зависят только от координат точки в потоке, но не зависят от момента времени, в который определяются характеристики движения:

и ,

и, следовательно, , , , .

Пример установившегося движения - вытекание жидкости из сосуда с постоянным уровнем, который не меняется (остаётся постоянным) по мере вытекания жидкости.

В случае установившегося течения в процессе движения любая частица, попадая в заданное, относительно твёрдых стенок, место потока, всегда имеет одинаковые параметры движения. Следовательно, каждая частица движется по определённой траектории.

Траекторией называется путь, проходимый данной частицей жидкости в пространстве за определенный промежуток времени.

При установившемся движении форма траекторий не изменяется во время движения. В случае неустановившегося движения величины направления и скорости движения любой частицы жидкости непрерывно изменяются, следовательно, и траектории движения частиц в этом случае также постоянно изменяются во времени.

Поэтому для рассмотрения картины движения, образующейся в каждый момент времени, применяется понятие линии тока.

Линия тока - это кривая, проведенная в движущейся жидкости в данный момент времени так, что в каждой точке векторы скорости ui совпадают с касательными к этой кривой.

Н ужно различать траекторию и линию тока. Траектория характеризует путь, проходимый одной определенной частицей, а линия тока направление движения в данный момент времени каждой частицы жидкости, лежащей на ней.

П ри установившемся движении линии тока совпадают с траекториями частиц жидкости. При неустановившемся движении они не совпадают, и каждая частица жидкости лишь один момент времени находится на линии тока, которая сама существует лишь в это мгновение. В следующий момент возникают другие линии тока, на которых будут располагаться другие частицы. Еще через мгновение картина опять меняется.

Если выделить в движущейся жидкости элементарный замкнутый контур площадью и через все точки этого контура провести линии тока, то получится трубчатая поверхность, которую называют трубкой тока. Часть потока, ограниченная поверхностью трубки тока, называется элементарной струйкой жидкости. Таким образом, элементарная струйка жидкости заполняет трубку тока и ограничена линиями тока, проходящими через точки выделенного контура с площадью . Если устремить к 0, то элементарная струйка превратится в линию тока.

Из приведённых выше определений вытекает, что в любом месте поверхности каждой элементарной струйки (трубки тока) в любой момент времени вектора скоростей направлены по касательной (и, следовательно, нормальные составляющие отсутствуют). Это означает, что ни одна частица жидкости не может проникнуть внутрь струйки или выйти наружу.

При установившемся движении элементарные струйки жидкости обладают рядом свойств:

  • площадь поперечного сечения струйки и ее форма с течением времени не изменяются, так как не изменяются линии тока;
  • проникновение частиц жидкости через боковую поверхность элементарной струйки не происходит;
  • во всех точках поперечного сечения элементарной струйки скорости движения одинаковы вследствие малой площади поперечного сечения;
  • форма, площадь поперечного сечения элементарной струйки и скорости в различных поперечных сечениях струйки могут изменяться.

Трубка тока является как бы непроницаемой для частиц жидкости, а элементарная струйка представляет собой элементарный поток жидкости.

При неустановившемся движении форма и местоположение элементарных струек непрерывно изменяются.

Кроме того, установившееся движение подразделяется на равномерное и неравномерное.

Равномерное движение характеризуется тем, что скорости, форма и площадь сечения потока не изменяются по длине потока.

Неравномерное движение отличается изменением скоростей, глубин, площадей сечений потока по длине потока.

Среди неравномерно движущихся потоков следует отметить плавно изменяющиеся движения, характеризующееся тем, что:

  • линии тока искривляются мало;
  • линии тока почти параллельны, и живое сечение можно считать плоским;
  • давления в живом сечении потока зависят от глубины.

28. язкость (внутренние трение) жидкости – свойство жидкости оказывать сопротивление перемещению одной ее части относительно другой.

Основной закон вязкой жидкости был установлен И. Ньютоном (1687 г.) – формула Ньютона

– сила внутреннего трения;

– динамический коэффициент вязкости;

– градиент скорости, показывающий на сколько изменилась скорость при изменении на единицу расстояния в направления ОХ при переходе от слоя к слою (скорость сдвига);

– площадь соприкасающихся слоев.

крови в норме = 0,004 – 0,005 Па . с.

Наряду с динамическим коэффициентом вязкости рассматривают кинематический коэффициент вязкости ( – плотность жидкости).

Жидкости делятся по вязким свойствам на два вида: ньютоновские и неньютоновские.

Ньютоновской называется жидкость, коэффициент вязкости которой зависит только от природы и температуры. Для ньютоновских жидкостей ~ . Для них справедлива формула Ньютона, в которой коэффициент вязкости является постоянным параметром, не зависящим от условий течения жидкости.

Неньютоновской называется жидкость, коэффициент вязкости которой зависит не только от природы вещества и температуры, но и от условий течения жидкости, в частности, от градиента скорости. Коэффициент вязкости в этом случае не является константой. При этом вязкость жидкости характеризуется условным коэффициентом вязкости, который зависит от определенных условий течения жидкости (например, давления, скорости). Зависимость силы вязкости от градиента скорости становится нелинейной.

Кровь – неньютоновская жидкость. В наибольшей степени это связано с тем, что она обладает внутренней структурой, представляя собой суспензию форменных элементов в растворе – плазме. Плазма – практически ньютоновская жидкость. Поскольку 93% форменных элементов составляют эритроциты, то при упрощенном рассмотрении – кровь – это суспензия эритроцитов в физиологическом растворе. Таким образом, внутренняя структура крови, а следовательно её вязкость, оказывается неодинаковой вдоль кровеносного русла в зависимости от условий течения.

Режимы течения крови разделяют на ламинарное и турбулентное

Ламинарное – это упорядоченное течение жидкости, при котором она перемещается слоями, параллельными направлению течения. При ламинарном течении скорость в сечении трубы изменяется по параболическому закону:

,

где – радиус трубы, – расстояние от оси, – максимальная скорость.

С увеличением скорости движения ламинарное течение переходит в турбулентное, при котором происходит интенсивное перемешивание между слоями жидкости, в потоке возникают хаотические движения по сложным траекториям. Для турбулентного течения характерно нерегулярное, беспорядочное изменение скорости со временем в каждой точке потока.






















Число Рейнольдса

Понятия ламинарности и турбулентности применимы как к течению жидкости по трубам, так и к обтеканию ею различных тел. В обоих случаях характер течения зависит от скорости течения, свойств жидкости и характерного линейного размера трубы или обтекаемого тела.

 

Английский физик и инженер Осборн Рейнольдс (1842-1912) составил безразмерную комбинацию, величина которой и определяет характер течения. Впоследствии эта комбинация была названа числом Рейнольдса (Re):

Число Рейнольдса используют при моделировании гидро- и аэродинамических систем, в частности кровеносной системы. Модель должна иметь такое же число Рейнольдса, как и сам объект, в противном случае соответствия между ними не будет.

Важным свойством турбулентного течения (по сравнению с ламинарным) является высокое сопротивление потоку. Если бы удалось «погасить» турбулентность, то удалось бы достичь огромной экономии мощности двигателей кораблей, подводных лодок, самолетов.

Формула Пуазейля

При ламинарном течении жидкости по трубе радиуса R и длины L объем Q жидкости, протекающей через горизонтальную трубу за одну секунду, можно вычислить следующим образом. Выделим тонкий цилиндрический слой радиуса r и толщины dr (рис. 8.9).

Рис. 8.9. Сечение трубы с выделенным слоем жидкости

Площадь его поперечного сечения равна dS = 2πrdr. Так как выделен тонкий слой, жидкость в нем перемещается с одинаковой скоростью v. За одну секунду слой перенесет объем жидкости

Подставив сюда формулу для скорости цилиндрического слоя жидкости (8.4), получим

Это соотношение справедливо для ламинарного течения ньютоновской жидкости.

Формулу Пуазейля можно записать в виде, справедливом для труб переменного сечения. Заменим выражение (Р1 - Р2)/L на градиент давления dP/d/, тогда получим

Как видно из (8.8), при заданных внешних условиях объем жидкости, протекающей по трубе, пропорционален четвертой степени ее радиуса. Это очень сильная зависимость. Так, например, если при атеросклерозе радиус сосудов уменьшится в 2 раза, то для поддержания нормального кровотока перепад давлений нужно увеличить в 16 раз, что практически невозможно. В результате возникает кислородное голодание соответствующих тканей. Этим объясняется возникновение «грудной жабы». Облегчения можно достичь, вводя лекарственное вещество, которое расслабляет мышцы артериальных стенок и позволяет увеличить просвет сосуда и, следовательно, поток крови.

 

Поток крови, проходящей через сосуды, регулируется специальными мышцами, окружающими сосуд. При их сокращении просвет сосуда уменьшается и соответственно убывает поток крови. Таким образом, незначительным сокращением этих мышц очень точно контролируется поступление крови в ткани.

В организме путем изменения радиуса сосудов (сужения или расширения) за счет изменения объемной скорости кровотока регулируется кровоснабжение тканей, теплообмен с окружающей средой.

Законы Ньютона

1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.

2-й: В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

где — ускорение тела, — силы, приложенные к материальной точке, а — её масса, или

3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению

  1. Силы упругости.

Сила, возникающая в результате деформации тела и направленная в противоположную сторону перемещения частиц тела при деформации,называется силой упругости.

Связь между силой упругости и удлинением тела при деформации была установлена английским ученым Гуком (1635-1703г.) в виде

,

- коэффициент жесткости, зависящий от формы, размеров и материала тела, [ ]= н/м. Упругие силы – электромагнитного происхождения.

  1. Силы трения.

Силы трения зависят от скорости движения тел относительно друг друга. Силы трения называются внешними, если они действуют между различными телами.Если же трение происходит между различными частями одного и того же тела, например между различными слоями жидкости или газа, скорости которых меняются непрерывно от слоя к слою,то трение называется внутренним.

Трение между поверхностью тела и окружающей его жидкой или газовой прослойкой, а также трение между различными слоями такой среды называется вязким.

Трение между телами без смазки называется сухим. Различают трение скольжения и качения.

Рассмотрим законы сухого трения. Такое трение возникает не только при скольжении тел, но и при покое.

Брусок не приходит в движение, пока не достигнет . Значит уравновешивалась какой то силой, направленной противоположно, которая и есть сила трения. Сила трения автоматически принимает значение внешней силы, пока тело не движется. Максимальное значение силы трения покоя равно . Если внешняя сила , то тело начинает двигаться, ускорение будет определяться результирующей сил и скольжения.

Опытным путем Кулоном был установлен закон сухого трения Кулона:

Максимальная сила трения покоя. А также сила трения скольжения не зависит от площади соприкосновения тел и пропорциональна силе нормального давления

,

- коэффициент трения, зависящий от природы и состояния трущихся поверхностей. Найдем значение коэффициента трения. Пусть тело находится на наклонной плоскости.

Оно приходит в движение, когда составляющая силы тяжести больше силы трения . В начале движения или

,

.

Коэффициент трения равен , при котором начинается скольжение тела по наклонной плоскости.

Независимость силы трения от площади соприкосновения (кирпич) – скольжение начинается при одном и том же угле при разных гранях.

Смазка уменьшает трение в 10 раз.

Трение скольжения и трение качения.

Трение скольжения и трение качения (шариковые и роликовые подшипники) имеет вид ,

- радиус катящегося тела. Кроме трения возникают силы сопротивления среды. Сила трения зависит от скорости по формуле

.

Величина коэффициентов зависит от формы и размеров тела, состояния его поверхности и от свойств среды, называемой вязкостью. В глицерине коэффициенты больше, чем в воде. Увеличивая поверхность тела и придавая ей надлежащую форму, можно сильно увеличить . На этом основано устройство парашюта.

6. Закон сохранения импульса обязан своим существованием такому фундаментальному свойству симметрии, как однородность пространства.

Из второго закона Ньютона (2.8) мы видим, что временная характеристика действия силы связана с изменением импульса Fdt=dP

Импульсом тела P называют произведение массы тела на скорость его движения:

(2.14)

Единица импульса — килограмм-метр в секунду (кг • м/с).

Направлен импульс всегда в туже сторону, что и скорость.

В современной формулировки закон сохранения импульса гласит: при любых процессах, происходящих в замкнутой системе, её полный импульс остаётся неизменным.

Докажем справедливость этого закона. Рассмотрим движение двух материальных точек, взаимодействующих только между собой (рис. 2.4).

Такую систему можно назвать изолированной в том смысле, что нет взаимодействия с другими телами. По третьему закону Ньютона, силы, действующие на эти тела, равны по величине и противоположны по направлению:

Рис.2.4

Используя второй закон Ньютона, это можно выразить как:

Объединяя эти выражения, получим

Перепишем данное соотношение, используя понятие импульса:

Следовательно,

или

Если изменение какой-либо величины равно нулю, то эта физическая величина сохраняется. Таким образом, приходим к выводу: сумма импульсов двух взаимодействующих изолированных точек остается постоянной, независимо от вида взаимодействия между ними.

(2.15)

Этот вывод можно обобщить на произвольную изолированную систему материальных точек, взаимодействующих между собой.   Если система не замкнута, т.е. сумма внешних сил, действующих на систему, не равна нулю: F ≠ 0, закон сохранения импульса не выполняется.

7. Согласно законам Ньютона, движение тела с ускорением возможно только под действием силы. Т.к. падающие тела движутся с ускорением, направленным вниз, то на них действует сила притяжения к Земле. Но не только Земля обладает свойством действовать на все тела силой притяжения. Исаак Ньютон предположил, что между всеми телами действуют силы притяжения. Эти силы называются силами всемирного тяготенияилигравитационнымисилами.

Распространив установленные закономерности – зависимость силы притяжения тел к Земле от расстояний между телами и от масс взаимодействующих тел, полученные в результате наблюдений,– Ньютон открыл в 1682 г. закон всемирного тяготения:Все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними:

.

Векторы сил всемирного тяготения направлены вдоль прямой, соединяющей тела. Коэффициент пропорциональности Gназываетсягравитационной постоянной (постоянной всемирного тяготения)и равна

.

Силой тяжестиназывается сила притяжения, действующая со стороны Земли на все тела:

.

Пусть – масса Земли, а – радиус Земли. Рассмотрим зависимость ускорения свободного падения от высоты подъема над поверхностью Земли:

Вес тела. Невесомость

Вес тела – сила, с которой тело давит на опору или подвес вследствие притяжения этого тела к земле. Вес тела приложен к опоре (подвесу). Величина веса тела зависит от того, как движется тело с опорой (подвесом).

Вес тела, т.е. сила, с которой тело действует на опору, и сила упругости, с которой опора действует на тело, в соответствие с третьим законом Ньютона равны по абсолютному значению и противоположны по направлению.

Если тело находится в покое на горизонтальной опоре или равномерно движется, на него действуют только сила тяжести и сила упругости со стороны опоры, следовательно вес тела равен силе тяжести (но эти силы приложены к разным телам):

.

При ускоренном движении вес тела не будет равен силе тяжести. Рассмотрим движение тела массой mпод действием сил тяжести и упругости с ускорением. По 2-му закону Ньютона:

Если ускорение тела направлено вниз, то вес тела меньше силы тяжести; если ускорение тела направлено вверх, то все тела больше силы тяжести.

Увеличение веса тела, вызванное ускоренным движением опоры или подвеса, называют перегрузкой.

Если тело свободно падает, то из формулы * следует, что вес тела равен нулю. Исчезновение веса при движении опоры с ускорением свободного падения называется невесомостью.

Состояние невесомости наблюдается в самолете или космическом корабле при движении их с ускорением свободного падения независимо от скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.

8. Космические скорости. Законы Кеплера

После длительной обработки многолетних наблюдений астронома Тихо Браге за движением планет Солнечной системы Кеплер эмпирически установил три закона движения планет:

  1. Каждая планета движется по эллипсу, в одном из фокусов которого расположено Солнце.
  2. Радиус-вектор планеты в равные промежутки времени описывает равные площади.
  3. Квадраты периодов обращений планет относятся как кубы больших осей эллиптических орбит, по которым они движутся вокруг Солнца.

Используя законы движения планет Солнечной системы, установленных Кеплером, Ньютон открыл закон всемирного тяготения.

Используя теорию движения планет Солнечной системы можно рассчитать траекторию движения искусственных спутников Земли и космических кораблей с выключенными двигателями (без учета сопротивления атмосферы Земли и гравитационного притяжения спутников – кораблей со стороны Солнца, Луны и других планет).

Полная энергия спутника в поле тяготения Земли равна

W = Wk + Wp,

т. е.

где m, M – массы спутника и Земли соответственно; v – скорость спутника;

r – расстояние до него.

  1. Если W < 0, то движение финитно и происходит по эллиптической орбите. В случае кругового движения

.

Следовательно, первая космическая скорость при r = RЗ

V1 » 7,9 км/c. (29)

  1. Минимальное значение энергии W, при котором движение спутника становится инфинитным (траектория – парабола ), равно нулю,

т. е.

Тогда вторая космическая скорость

» 11,2 км/c. (30)

3. Если полная энергия спутника положительна, то его движение станет гиперболическим и третью космическую скоростьможно найти из условия

где МС – масса Солнца. Тогда » 42 км/с.

В направлении движения Земли » 16,7 км/c. В направлении противоположном движению Земли третья космическая скорость

» 72,7 км/c.

9. Работа - физическая величина, характеризуюая результат действия силы и числено равная скалярному произведнию вектора силы и вектора перемещения, совершенно под действием этой силы.

A = F · S ·cosа (а-угол между направлением силы и направлением перемещения)

Работа не совершается если:

-сила действует, а тело не перемещается

-тело перемещается, а сила равна нулю

-угол м/д векторами силы и перемещения равен 90градусов

Мощность- физическая величина, характеризующаяскорость совершения работы и числено равная отношению работы к интервалу, за который работа совершена.

средняя мощность; мгновенная мощность.

Мощность показывает, какая работа совершеная за единицу времени.

Энергией - это скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Механическая энергия - это величина характеризующая движение и взаимодействие тел и являющаяся функцией скоростей и взаимного расположения тел. Она равна сумме кинетической и потенциальной энергий.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела.

Кинетическая энергия-энергия движения.

A = Ek2 – Ek1

Физическую величину, равную произведению массы тела на модуль ускорения свободного падения и на высоту, на которую поднято тело над поверхностью Земли, называют потенциальной энергией взаимодействия тела и Земли.

Потенциальная энергия-энергия взаимодействия.

Ep = m∙g∙h.

А= – (Ер2 – Ер1).

10. В физике под термином столкновения понимают не просто непосредственный удар, например, бильярдных шаров, а процесс в более широком смысле.

Столкновениями, или ударом, называют любые кратковременные взаимодействия частиц (тел).

Особенностью теории столкновений является то, что при этом детально не анализируются механизмы взаимодействия. Причина заключается в том, что анализ сил, возникающих при столкновении, весьма затруднителен, а во многих случаях и просто невозможен, и не только из-за малого промежутка времени процесса взаимодействия. Например, так обстоит дело с ядерными силами.

После столкновения частицы в конечном состоянии могут отличаться по своим внутренним свойствам от частиц в начальном состоянии.

В связи с этим различают упругие и неупругие столкновения.

Столкновениями обусловлены многие явления, рассматриваемые в различных разделах физики. Прежде всего, столкновения играют основную роль в структуре и динамике плазмы и газов.

Такие процессы, как передача тепла в газах, диффузии газов и другие, определяются свойствами сталкивающихся молекул и других частиц друг с другом. Свойства атомов, атомных ядер, и элементарных частиц можно исследовать одним из основных способов, изучая и анализируя их столкновения с другими частицами.

Для описания процесса взаимодействия привлекают законы сохранения. Поскольку законы сохранения справедливы не только в классической, но и в квантовой механике, то результаты, полученные из этих законов, применимы и к столкновениям квантовых частиц, например, атомов, ядер и др. частиц.

Рис. 16

Для полного описания процесса столкновения используется понятие "сечение" столкновений. Важное место имеет выбор системы отсчета. К таким системам отсчета относят лабораторную систему (рис. 16, а, б).

Систему отсчета, в которой столкновения частиц изучаются на опыте, называют лабораторной (Л.С.). Иногда в этой системе отсчета одна из частиц

Рис. 17

принимается покоящейся (ее называют мишенью), а другая частица, налетающая на нее, – снарядом (рис. 16, б). Для проведения теоретического анализа столкновений частиц используют также систему центра инерции (СЦИ) (рис. 17).

Система отсчета, в которой центр инерции покоится, а суммарный импульс частиц системы равен нулю, называют системой центра инерции.

В такой системе отсчета векторы импульсов сталкивающихся частиц равны по величине и противоположны по направлению.

Упругое взаимодействие двух частиц

 

Процесс упругого взаимодействия осуществляется в газах (столкновение молекул), ядерных реакциях (например, столкновение нейтрона с протоном).

 

Упругим называют столкновение, в результате которого внутреннее состояние взаимодействующих частиц не меняется.

 

Большинство упругих столкновений, за исключением ядерных реакций высоких энергий, относятся к медленным (нерелятивистским) процессам. Для расчета процесса упругого столкновения двух частиц применяют закон сохранения импульса и закон сохранения энергии. Для изолированной системы двух взаимодействующих частиц закон сохранения импульса запишем в виде р1+р2=р1*+р2*, (31)

 

где р1 = m1v1, p2 = m2v2 – импульсы частиц до взаимодействия (m1, m2 и v1, v2 – массы и скорости частиц до взаимодействия); р1* = m1u1, р2* = m2u2 – импульсы этих же частиц после взаимодействия (u1, u2 – скорости частиц после взаимодействия). Закон сохранения энергии упругого столкновения двух частиц р1^2/2m1+p2^2/2m2=(p1*)^2/2m1+(p2*)^2/2m2.(32) Абсолютно неупругим ударом, называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно тело.

Сталкивающиеся тела деформируются, возникают упругие силы и т.д. Однако если удар неупругий то, в конце концов все эти процессы прекращаются, и в дальнейшем оба тела, соединившись вместе, движутся как единое твёрдое тело.

v1 v2
m1 m2

Рассмотрим абс. неупругий удар на примере столкновения двух шаров. Пусть они движутся вдоль прямой, соединяющей их центры, со скоростями v1 и v2. В этом случае говорят что удар являетсяцентральным. Обозначим заV общую скорость шаров после соударения. Закон сохр. Импульса даёт:

     

m1v1+m2v2=(m1+m2)V V=(m1v1+m2v2)/(m1+m2)

K2=1/2(m1+m2)V

Кин. энергии системы до удара и после: K1=1/2(m1v12+m2v22)

Пользуясь этими выраж. получаем:

K1-K2=1/2v1 v2 v1-v2)
где =m1m2/(m1+m2)

приведенная масса шаров. Таким образом, при столкновении двух абсолютно неупругих

шаров происходит потеря кин. энергии макроскопического движения, равная половине произведения приведённой массы на квадрат относительной скорости.

Абсолютно упругим ударом называется столкновение тел, в результате которого их внутренние энергии не меняются. Пример: Столкновение бильярдных шаров из слоновой кости, при столкновениях атомных, ядерных частиц. Рассмотрим центральный удар двух шаров,движущ-сянавстречу друг другу:

(m1v12)/2+(m2 v22)/2=(m1u12)/2+(m2u22)/2 и:

m1v1+m2v2=m1u1+m2u2u1=[(m1-m2)v1+2m2v2]/(m1 +m2)

u2=[(m2-m1)v2+2m1v1]/(m1+m2)

При столкновении двух одинаковых абсолютно упругих шаров они просто обмениваются скоростями.

12. Центр масс — (вмеханике) геометрическая точка, характеризующаядвижениетела или системы частиц, как целого[1]. Не является тождественным понятиюцентра тяжести(хотя чаще всего совпадает).

Положение центра масс (центра инерции) системы материальных точекв классической механике определяется следующим образом[2]:

где —радиус-векторцентра масс, — радиус-векторi-й точки системы, —массаi-й точки.

Для случая непрерывного распределения масс:

где — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением[3]:

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

В механике!!!

Число степеней свободы.

Определение. Числом степеней свободы механической системы называется количество независимых координат определяющих положение тела в пространстве. а) Так, положение в пространстве материальной точки полностью определяется заданием трёх её координат (например, декартовых x, y, z или сферических , т.е. число степеней свободыi=3).

б) Система из 2-х жёстко связанных материальных точек (отрезок, их соединяющий, фиксирован ). Координаты этих 2-х точек связаны соотношением , при этом достаточно задать 5 координат, а шестую можно найти из приведённого соотношения, т.е.i=5. Если точки не связаны между собой жёстко, то число степеней свободы i=6. Изменение даёт ещё одну степень свободы, которая называется колебательной.

Положение системы, состоящей из 2-х жёстко связанных материальных точек (или, например, стержня) можно задать следующим образом: задать 3 координаты центра инерции системы С и 2 угла и , которыми определяется направление в пространстве оси системы (Рис. 7.1).

Первые три степени свободы называется поступательными, а две другие – вращательными. Вращательные степени свободы соответствуют вращению вокруг 2-х взаимно перпендикулярных осей (всегоi =5).

в) Положение абсолютно твёрдого тела можно определить, задав 3 координаты центра инерции (поступательные степени свободы) и 3 угла (вращательные степени свободы). Т.е.i=6

Рис. 7.1

 

 

В динамике сооружений число степеней свободы равно числу независимых геометрических параметров, определяющих положение колеблющихся масс в любой момент времени. Из приведённого определения числа степеней свободы очевидно, что в динамике сооружений, в отличие от статики, появляется ещё одна координата – время.

Определение числа степеней свободы удобно проводить путём наложения связей. Минимальное число связей, устраняющих возможные перемещения масс, будет равно числу степеней свободы системы.

При определении числа степеней свободы можно вводить допущения, упрощающие их нахождение.

Р ассмотрим пример определения числа степеней свободы для простой балки, несущей массуm. Число степеней свободы такой балки равно 1 (рис. 9.1), так как массаmможет колебаться только в вертикальном направлении.

 

 

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. В физике момент силы можно понимать как «вращающая сила

где — сила, действующая на частицу, а —радиус-вектор частицы.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количествовращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.

Момент импульса замкнутой системы сохраняется.

Момент инерции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения в Международной системе единиц (СИ): кг·м².

Обозначение: I или JМоментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

где: mi — масса i-й точки,

ri — расстояние от i-й точки до оси.

Связь момента силы и момента импульса

Момент импульса и момент силы связаны между собой. Найдём выражение, связывающее их.

Возьмём производную по времени от выражения, определяющего момент импульса:

Член равен нулю, так как угол между вектором скоростиdr/dt и вектором импульсар равен нулю.

Производная импульса по времени, имеющаяся во втором члене полу­ченного выражения, равна силе (второй закон Ньютона). Поэтому можем запи­сать полученное выражение в следующей форме:

.

Но [r,F] есть по определению момент силыF относительно той же точки О. Поэтому

т.е. скорость изменения момента импульса частицы равна моменту силы, действующему на эту частицу.

Проекция последнего уравнения на ось zвыражает связь момента им­пульса относительно осиzи момента силы относительно той же оси.

.

4.4. Основной закон динамики вращательного движения

Пусть твёрдое тело вращается относительно неподвижной оси z.

Выразим момент импульса твёрдого тела относительно оси вращения. Для этого представим твёрдое тело как совокупность элементарных масс. Момент импульса одной элементарной массы относительно осиz

Момент импульса всего тела равен сумме моментов импульсов всех эле­ментарных масс

Скорость vу разных элементарных масс различна, а угловая скорость одинакова.

Поскольку v=wr,

Поскольку угловая скорость со одинакова для всех элементарных масс, её можно вынести за знак суммы

Введём обозначение . С учётом этого

Lz=Jz.w.

Ранее мы получили, что момент импульса и момент силы связаны сле­дующим образом:

.

Заменив Lz наJzωи с учётом того, чтоJz с течением времени не изменяется, получаем

Учитывая, что производная угловой скорости по времени равна угловому ускорению e, получаем

.

Полученное выражение - основной закон динамики вращательного движения, связывающий между собой меру внешнего воздействия - момент силы Mz с результатом внешнего воздействия - угловым ускорениемe.

Коэффициент Jz, стоящий в этом уравнении, зависит от массы тела и от то­го, как она распределена по объёму тела (это видно из определения величиныJz).

Чем меньше Jz, тем большее угловое ускорение получит тело при воздей­ствии момента силыMz. Это говорит о том, что коэффициентJz. характеризует инертность вращающегося тела. ПоэтомуJz называют моментом инерции тела относительно осиz.

Знание величины момента инерции тела необходимо для описания враща­тельного движения. Поэтому обсудим более подробно, что такое момент инер­ции и как его вычислить.

13. Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.

 

Рисунок 1.14.1. Равновесие твердого тела под действием трех сил. При вычислении равнодействующей все силы приводятся к одной точке C

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

M1 + M2 + ... = 0.

В Международной системе единиц (СИ) моменты сил измеряются в ньютон-метрах (Н∙м).

Рисунок 1.14.2. Силы, действующие на рычаг, и их моменты. M1 = F1 · d1 > 0; M2 = – F2 · d2 < 0. При равновесии M1 + M2 = 0

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

Модель. Равновесие брусков

Оба эти условия не являются достаточными для покоя.

Рисунок 1.14.3. Качение колеса по горизонтальной поверхности. Равнодействующая сила и момент сил равны нулю

Катящееся по горизонтальной поверхности колесо – пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние. Устойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, возвращается в прежнее положение.Неустойчивое равновесие — это равновесие, при котором тело, выведенное из положения равновесия и предоставленное самому себе, будет еще больше отклоняться от положения равновесия.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, – пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Рисунок 1.14.4. Различные виды равновесия шара на опоре. (1) – безразличное равновесие, (2) – неустойчивое равновесие, (3) – устойчивое равновесие

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси – состояние равновесия неустойчиво (рис. 1.14.5).

Рисунок 1.14.5. Устойчивое (1) и неустойчивое (2) равновесие однородного круглого диска, закрепленного на оси O; точка C – центр массы диска; – сила тяжести; – упругая сила оси; d – плечо

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры, т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

Рисунок 1.14.6. Падающая Пизанская башня. Точка C– центр масс, точка O – центр основания башни, CC' – вертикаль, проходящая через центр масс

14. П усть дана материальная точка, имеющая импульср. Пусть её положение относительно точки О определяется радиусом-векторомr. Движение такой точки характеризуют моментом импульсаL.

Моментом импульса материальной точки относительно точки О называется векторная величина, равная векторному произведению радиуса-вектораr и вектора импульсаp:

L=[r,p].

Модуль момента импульса L=rpsina, гдеa - угол между векторамиr и р. Направление вектора момента импульса определяется по правилу правого винта.

Размерность момента импульса [L]=кг.м2/с.

М омент импульса тела относительно точки равен векторной сумме моментов импульсов частиц тела относительно той же точки

L=L1+L2+…+LN.

Проекция вектора момента импульса относительно точки О на ось z, проходящую через эту точку, называется моментом импульса относительно оси:

Lz=[r,p]z.

Момент импульса относительно оси является скалярной величиной.

Момент импульса тела относительно оси z равен проекции момента им­пульса тела относительно точки О на осьz, проходящую через эту точку.
Закон сохранения момента импульса.

Изменение момента импульса равно импульса момента сил: dL=d(I)=Id=Mdt.

 

Сумма моментов импульсов всех тел изолированной системы сохраняется неизменной. d(I)=0, I=const.

Основное уравнение динамики вращательного движения в импульсной форме. Угловое ускорение тела равно изменению угловой скорости, делённому на промежуток времени, в течение которого это изменение произошло: Подставим это выражение в основное уравнение динамики вращательного движения отсюда I(ω2 - ω1) = MΔt, или IΔω = MΔt. Таким образом, ΔL = MΔt. (6.4) Изменение момента импульса равно произведению суммарного момента сил, действующих на тело или систему, на время действия этих сил. Закон сохранения момента импульса: Если суммарный момент сил, действующих на тело или систему тел, имеющих неподвижную ось вращения, равен нулю, то изменение момента импульса также равно нулю, т. е. момент импульса системы остаётся постоянным. ΔL = 0, L = const. Изменение импульса системы равно суммарному импульсу сил, действующих на систему. Вращающийся фигурист разводит в стороны руки, тем самым увеличивает момент инерции, чтобы уменьшить угловую скорость вращения. Закон сохранения момента импульса можно продемонстрировать с помощью следующего опыта, называемого «опыт со скамьёй Жуковского». На скамью, имеющую вертикальную ось вращения, проходящую через её центр, встаёт человек. Человек держит в руках гантели. Если скамью заставить вращаться, то человек может изменять скорость вращения, прижимая гантели к груди или опуская руки, а затем разводя их. Разводя руки, он увеличивает момент инерции, и угловая скорость вращения уменьшается (рис. 6.11, а), опуская руки, он уменьшает момент инерции, и угловая скорость вращения скамьи увеличивается (рис. 6.11, б). Человек может также заставить вращаться скамью, если пойдёт вдоль её края. При этом скамья будет вращаться в противоположном направлении, так как суммарный момент импульса должен остаться равным нулю. На законе сохранения момента импульса основан принцип действия приборов, называемых гироскопами. Основное свойство гироскопа — это сохранение направления оси вращения, если на эту ось не действуют внешние силы. В XIX в. гироскопы использовались мореплавателями для ориентации в море.

Кинетическая энергия вращающегося твёрдого тела. Кинетическая энергия вращающегося твёрдого тела равна сумме кинетических энергий отдельных его частиц. Разделим тело на малые элементы, каждый из которых можно считать материальной точкой. Тогда кинетическая энергия тела равна сумме кинетических энергий материальных точек, из которых оно состоит: Угловая скорость вращения всех точек тела одинакова, следовательно, Величина в скобках, как мы уже знаем, это момент инерции твёрдого тела. Окончательно формула для кинетической энергии твёрдого тела, имеющего неподвижную ось вращения, имеет вид В общем случае движения твёрдого тела, когда ось вращения свободна, его кинетическая энергия равна сумме энергий поступательного и вращательного движений. Так, кинетическая энергия колеса, масса которого сосредоточена в ободе, катящегося по дороге с постоянной скоростью, равна В таблице сопоставлены формулы механики поступательного движения материальной точки с аналогичными формулами вращательного движения твёрдого тела.

    1. 15. Гармонические колебания. Параметры гармонических колебаний

Гармоническими называют колебания, происходящие по закону синуса или косинуса,

,

где х – мгновенное значение колеблющейся величины; А - амплитуда гармонического колебания; это максимальное отклонение колеблющейся величины от среднего значения; j = = (wt + jo) – фаза гармонического колебания; jo – начальная фаза гармонического колебания (jo – это значение фазы в начальный момент времени t = 0); w – циклическая частота гармонического колебания; поскольку из определения фазы видно, что , постольку физический смысл циклической частоты – скорость изменения фазы по времени*;t – текущее время.

Кроме названных для описания гармонических колебаний используются следующие параметры: Т – период гармонических колебаний; период – это время, за которое происходит одно коле-бание; n – частота гармонических колебаний; частота – это коли-чество колебаний, происходящих за единицу времени.

Параметры гармонических колебаний связаны между собой следующими соотношениями:

.

16. Колеба́ния — это повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Для изучения колебательного движения нам придется ввести несколько терминов – параметров колебательного движения.

 Расстояние груза от положения равновесия до точки, в которой находится груз, называют смещением x.

 Максимальное смещение – наибольшее расстояние от положения равновесия – называется амплитудой и обозначается буквой A.

 Выражение, стоящее под знаком синуса или косинуса в формуле (1.1.2) φ = ωt + φ0, определяет смещение x в данный момент времени t и называется фазой колебания.

 Если t = 0, то φ = φ0. Поэтому φ0 называется начальной фазой колебания. Фаза измеряется в радианах и определяет значение колеблющейся величины в данный момент времени.

Т.к. синус и косинус изменяются в пределах от -1 до +1, то х может принимать значения от -А до +А (рис. 1.2).


Рис. 1.2

 Движение от некоторой начальной точки до возвращения в ту же точку, например от x = A к x = –A и обратно в x = A, называется полным колебанием. Частота колебаний ν определяется как число полных колебаний в 1 секунду. Частоту, как правило, измеряют в герцах (Гц): 1 Гц равен 1 полному колебанию в секунду. Очевидно, что

  . (1.2.1)  

Тпериод колебаний – минимальный промежуток времени, по истечении которого повторяются значения всех физических величин, характеризующих колебание

  . (1.2.2)  

 ω – циклическая (круговая) частота – число полных колебаний за 2π секунд:

  ω = 2π ν. (1.2.3)  

Заметим, что фаза φ не влияет на форму кривой х(t), а влияет лишь на ее положение в некоторый произвольный момент времени t.
Например, при φ0 = 0 мы имеем x (t) = A cos ωt, как на рис. 1.2, а при φ0 = –π/2 - чистую синусоиду x (t) = A cos (ωt – π/2) = sin ωt.
Таким образом, гармонические колебания являются всегда синусоидальными.
Кроме того, заметим, что частота и период гармонических колебаний не зависят от амплитуды. Изменяя амплитуду колебаний груза на пружине, мы не изменяем частоту колебаний этой системы.

Колебания характеризуются не только смещением, но и скоростью vx и ускорением ax.

Если смещение описывается уравнением x = A sin (ωt + φ0), то по определению

  , (1.2.4)  
  . (1.2.5)  

В этих уравнениях vm = ωA – амплитуда скорости; vm = –ω2A – амплитуда ускорения.

Из уравнений (1.2.4) и (1.2.5) видно, что скорость и ускорение также являются гармоническими колебаниями. Классификация колебательного движения

Колебательные процессы в основном разделяются на периодические и непериодические.

Периодическим называется процесс, характеризующийся тем, что колеблющаяся величина x в любой момент времени через период T принимает то же самое значение:

.

Непериодическим является колебание, характеризующееся изменением амплитуды и периода колебаний со временем. Промежуточным колебательным процессом является почти периодическое движение с параметрами, медленно изменяющимися со временем.

Колебания широко распространены в природе и в технике. В зависимости от того, какая величина испытывает колебания, они называются механическими, электромагнитными, тепловыми и т.д. Вне зависимости от физической природы колебаний, они подчиняются одинаковым законам. Колебания классифицируют на следующие типы:

- cобственные колебания происходят в системе без воздействия внешних сил. Частным случаем собственных колебаний являются гармонические колебания, происходящие по закону синуса или косинуса.

- затухающие колебания - колебания системы, сопровождающиеся уменьшением энергии вследствие влияния диссипативных сил, например, сил трения. Диссипативные силы приводят к уменьшению механической энергии системы, при этом уменьшается амплитуда колебаний.

- вынужденные колебания происходят в системе под действием внешней, периодически изменяющейся силы.

- автоколебания возникают под действием вынуждающей силы, причем момент воздействия на систему задается самой колебательной системой. Примером является колебание маятника часов за счет энергии поднятой гири или закрученной пружины. Маятник получает толчки за счет этой энергии, проходя через среднее положение.

- параметрические колебания сопровождаются изменением какого-либо параметра системы. Например, изменяется длина нити, на которой подвешен шарик.

Наиболее простыми являются собственные колебания системы, происходящие по закону синуса или косинуса. Эти колебания называются гармоническими. Они возникают под действием внутренней силы, называемой квазиупругой силой (т.е. как бы упругой):

(7.1)

Частота и амплитуда гармоничеcких колебаний остаются постоянными.

Возьмем шарик массой m, закрепленный на конце пружины длиной . Под действием силы тяжести пружина растянется, ее длина станет равной (рис. 7.1). При этом возникнет сила упругости, направленная в сторону, противоположную направлению растяжения:

,

где - жесткость пружины.

Потянем за шарик и отпустим. Длина пружины станет равной , где x - отклонение от положения равновесия. На шарик будет действовать сила тяжести и сила упругости.

 






Механические колебания

Автоколебания — свободные колебания, поддерживаемые внеш­ним источником энергии, включение которого в нужные моменты времени осуществляет сама колеблющаяся система (например, колебания маятника часов).

Параметрические колебания — это колебания, в процессе которых происходит периодическое изменение какого-либо параметра системы (например, раскачивание качелей: приседая в крайних положениях и выпрямляясь в среднем положении, человек, находящийся на качелях, изменяет момент инерции качелей).

Различные по своей природе колебания обнаруживают много общего: они подчиняются одним и тем же закономерностям, описываются одними и теми же уравнениями, исследуются одними и теми же методами. Это дает возможность создать единую теорию колебаний.

Простейшими из периодических колебаний

являются гармонические колебания.

Гармонические колебания- это колебания, в процессе совершения которых значения физических величин изменяются с течением времени по закону синуса или косинуса. Большинство колебательных процессов описываются этим законом или может быть приставлено в виде суммы гармонических колебаний.

Возможно и другое «динамическое» определение гармонических колебании как процесса, совершаемого под действием упругой или «квазиупругой»

силы.

2. Периодическими называются колебания, при которых происходит точное повторение процесса через равные промежутки времени.

 

Периодом периодических колебаний называется минимальное время, через которое система возвращается в первоначальное

 

 

х — колеблющаяся величина (например, сила тока в цепи, состояние и начинается повторение процесса. Процесс, происходящий за один период колебаний, называется «одно полное колебание».

периодических колебаний называется число полных колебаний за единицу времени (1 секунду) — это может быть не целое число.

Т — период колебаний Период — время одного полного колебания.

 

Чтобы вычислить частоту v, надо разделить 1 секунду на время Т одного колебания (в секундах) и получится число колебаний за 1 секунду или координата точки) t — время

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, каксила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.


Поделиться:



Последнее изменение этой страницы: 2019-04-20; Просмотров: 289; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.89 с.)
Главная | Случайная страница | Обратная связь