Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Анатомо-физиологическая характеристика центральной нервной системы. Рефлекторная луга. Проявление статических и статокинетических рефлексов в различных физических упражнениях.



Нервная система состоит из центрального (головной и спинной мозг) w . периферического отделов (нервов, отходящих от головного и спинного мозга и расположенных на периферии нервных узлов). Центральная нервная система координирует деятельность различных органов и систем организма и регулирует эту деятельность в условиях изменяющейся внешней среды по механизму рефлекса. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека. Спинной мозг лежит в спинно-мозговом канале, образованном дужками позвонков. Первый шейный позвонок — граница спинного мозга сверху, а граница снизу — второй поясничный позвонок. Спинной мозг делится на пять отделов с определенным количеством сегментов: шейный, грудной, поясничный, крестцовый и копчиковый. В центре спинного мозга имеется канал, заполненный спинномозговой жидкостью. На поперечном разрезе лабораторного препарата легко различают серое и белое вещество мозга. Серое вещество мозга образовано скоплением тел нервных клеток (нейронов), периферические отростки которых в составе спинномозговых нервов достигают различных рецепторов кожи, мышц, сухожилий, слизистых оболочек. Белое вещество, окружающее серое, состоит из отростков, связывающих между собой нервные клетки спинного мозга; восходящих чувствительных (аферентных), связывающих все органы и ткани (кроме головы) с головным мозгом; нисходящих двигательных (эфферентных) путей, идущих от головного мозга к двигательным клеткам спинного мозга. Итак, спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. В различных отделах спинного мозга находятся мотонейроны (двигательные нервные клетки), иннервирующие мышцы верхних конечностей, спины, груди, живота, нижних конечностей. В крестцовом отделе располагаются центры дефекации, мочеиспускания и половой деятельности. Важнаяфункция мотонейронов в том, что они постоянно обеспечивают необходимый тонус мышц, благодаря которому все рефлекторные двигательные акты осуществляются мягко и плавно. Тонус центров спинного мозга регулируется высшими отделами центральной нервной системы. Поражения спинного мозга влекут за собой различные нарушения, связанные с выходом из строя проводниковой функции. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса.

Головной мозг представляет собой скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов. Строение головного мозга несравнимо сложнее строения любого органа человеческого тела.

Кора больших полушарий головного мозга — наиболее молодой в филогенетическом отношении отдел головного мозга (филогенез — процесс развития растительных и животных организмов в течение времени существования жизни на Земле). В процессе эволюции кора больших полушарий стала высшим отделом центральной нервной системы, формирующим деятельность организма как единого целого в его взаимоотношениях с окружающей средой. Мозг активен не только во время бодрствования, но и во время сна. Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% массы тела человека, мозг поглощает 18— 25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Он использует 60—70% глюкозы, образуемой печенью, и это несмотря на то, что мозг содержит меньше крови, чем другие органы. Ухудшение кровоснабжения головного мозга может быть связано с гиподинамией. В этом случае возникает головная боль различной локализации, интенсивности и продолжительности, головокружение, слабость, понижается умственная работоспособность, ухудшается память, появляется раздражительность. Чтобы охарактеризовать изменения умственной работоспособности, используется комплекс методик, оценивающих различные ее компоненты (внимание, объем памяти и восприятия, логическое мышление).

Вегетативная ' нервная система — специализированный отдел нервной системы, регулируемый корой больших полушарий. В отличие от соматической нервной системы, иннервирующей произвольную (скелетную) мускулатуру и обеспечивающей общую чувствительность тела и других органов чувств, вегетативная нервная система регулирует деятельность внутренних органов — дыхания, кровообращения, выделения, размножения, желез внутренней секреции. Вегетативная нервная система подразделяется на симпатическую и парасимпатическую системы Деятельность сердца, сосудов, органов пищеварения, выделения, половых и других, регуляция обмена веществ, термообразоваиия, участие в формировании эмоциональных реакций (страх, гнев, радость) — все это находится в ведении симпатической и парасимпатической нервной системы и под контролем высшего отдела центральной нервной системы.

Рецепторы и анализаторы Способность Организма быстро приспосабливаться к изменениям окружающей среды реализуется благодаря специальным образованиям — рецепторам, которые, обладая

строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление) в нервные импульсы, поступающие по нервным волокнам в центральную нервную систему. Рецепторы человека делятся на две основные группы: экстеро- (внешние) и интеро- (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, которая называется анализатором. Анализатор состоит из трех отделов — рецептора, проводниковой части и центрального образования в головном мозге.

Высшим отделом анализатора является корковый отдел: кожный анализатор (тактильная, болевая, тепловая, холодовая чувствительность); двигательный (рецепторы в мышцах, суставах, сухожилиях и связках возбуждаются под влиянием давления и растяжения); вестибулярный (расположен во внутреннем ухе и воспринимает положение тела в пространстве); зрительный (свет и цвет); слуховой (звук); обонятельный (запах); вкусовой (вкус); висцеральный (состояние ряда внутренних органов).

Рефлекс – ответная реакция организма, в ответ на раздражение осуществляемая с участ. Н.С. Нервный путь рефлекса называется – рефлекторной дугой (нц- нервные центры)

Состав рефлект. Дуги: 1. воспринимающее образование – рецептор, 2. чувствительный (афферентный нейрон) – связывает рецептор с нц, 3. промежуточный (вставочный) - нейрон нц, 4. эфферентный нейрон (связывающий) – связывает нц с периферией, 5. рабочий орган, отвечающий на раздражение – мышца или железа. Выполняя ответные реакции, , нц посылает команды к рабочему органу через эфферентные пути, кот выполняет роль каналов прямой связи. Каналы обратной связи – это афферентные пути сообщения в цнс о результате действия. Эта информация используется нц для управления дальнейшими действиями(прекращение, продолжение, изменение), следовательно, прямые и обратные связи нц с периферией = рефлекторное кольцо = целостная рефлекторная деятельность.

Механизмы мышечногосокращения Функции мышц регулируются различными отделами центральной нервной системы (ЦНС), которые во многом определяют характер их разносторонней активности (фазы движения, тонического напряжения и др.). Рецепторы Двигательного аппарата дают начало афферентным волокнам двигательного анализатора, которые составляют 30—50% волокон смешанных (афферентно-эфферентных) нервов, направляющихся в спинной мозг. Сокращение мышц Вызывает импульсы, которые являются источником мышечного чувства — кинестезии.

Передача возбуждения с нервного волокна на мышечное осуществляется через нервно-мышечный синапс (рис. 2.5), который состоит из двух разделенных щелью мембран — пресинаптической (нервного происхождения) и постсинаптической (мышечного происхождения). При воздействии нервного импульса выделяются кванты ацетилхолина, который приводит к возникновению электрического потенциала, способного возбудить мышечное волокно. Скорость проведения нервного импульса через синапс в тысячи раз меньше, чем в нервном волокне. Он проводит возбуждение только в направлении к мышце. В норме через нервно-мышечный синапс млекопитающих может пройти до 150 импульсов в одну секунду. При утомлении (или патологии) подвижность нервно-мышечных окончаний снижается, а характер импульсов может изменяться.

Химизм и энергетика мышечного сокращения. Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. Химические превращения в мышце протекают как при наличии кислорода (в аэробных условиях), так и при его отсутствии (в анаэробных условиях).

ВОПРОС 14.

Биологическое значение питания. Калорийность пищевого рациона и соответствие ее энерготратам организма. Сбалансированность пищевого рациона по белкам, жирам и углеводам. Особенности питания спортсменов.

Характер питания спортсменов определяется особенностями обмена веществ при разных видах и различных степенях интенсивности спортивной нагрузки:

1) при кратковременных больших физических нагрузках;

2) при умеренных нагрузках средней продолжительности;

3) при спортивных нагрузках, длительно протекающих.

Первый тип обмена веществ, отмечаемый при больших физических нагрузках, характеризуется повышением расхода пластических компонентов для энергетических целей, а также повышением использования внутримышечных источников энергии (фосфокреатина, гликогена) он расходуется главным образом для энергетических целей, обеспечивая интенсивную работу мышц. Второй тип обмена характерен для средних и умеренных нагрузок. При этом в большей степени используются внемышечные источники энергии, процессы гликолиза вытесняются процессами аэробного окисления и метаболические процессы в общем характеризуются устойчивостью. Наряду с этим здесь все же может быть кислородная задолженность той или иной степени. Третий тип обмена веществ характерен для длительно протекающих физических нагрузок средней и умеренной интенсивности. При этом отмечается возникновение вторичных нарушений устойчивого состояния метаболических процессов — усиление гликолиза, появление рабочей гипоксии, образование кислородной задолженности и др. Характерным для этого типа обмена веществ является длительность восстановительного периода. Приведенные особенности обмена веществ определяют требования к питанию спортсменов. В количественном отношении питание спортсменов должно быть достаточным и полностью возмещать энергетические и пластические затраты организма. Определения величин энергетических затрат при различных видах спортивной работы показали значительные колебания в зависимости от продолжительности и интенсивности выполняемой работы. Согласно официальным данным, потребность в калориях для спортсменов мужчин в дни напряженных тренировок и соревнований определена в 4500—5000 ккал и для женщин — в 3500—4000 ккал в день. При установлении величин калорийности суточных пищевых рационов спортсменов необходимо учитывать не только повышенные энергетические затраты спортсменов, но и характер занятия спортом с отрывом от постоянной работы или с совмещением занятий спортом с обычной работой. В условиях систематическою занятия спортом с отрывом от постоянной работы, например в условиях спортивных сборов, в зависимости от вида спортивной деятельности могут устанавливаться пищевые рационы определенной энергетической ценности

Потребность в белке

Интенсивная физическая нагрузка сопровождается повышенной потребностью в белке. При спортивной деятельности белок используется не только на пластические цели, связанные с восстановлением тканевых элементов, но и для образования новых клеток в мышечной ткани в процессе развития мускулатуры и поддержания ее в хорошем рабочем состоянии. При нормировании белка необходимо учитывать повышенный расход белка у спортсменов в процессе тренировки, а также в результате перегревания тела. Высокий уровень белкового питания сказывается положительно на общей работоспособности, повышая ее, а также на снижении утомляемости и наиболее быстром восстановлении сил и работоспособности. Установлено благоприятное влияние повышенных белковых норм на высшую нервную деятельность, на повышение возбудимости нервной системы, усиление рефлекторной деятельности, увеличение быстроты реакции и максимальной конденсации сил на короткий отрезок времени. Особенно важное значение имеет обеспечение высокого уровня белкового питания при скоростных и силовых нагрузках максимальной и субмаксимальной интепсивности, так как при этих видах спортивной нагрузки отмечается наибольшее повышение интенсивности белкового обмена. Достаточно высокий уровень белка в рационах в период отдыха после интенсивных спортивных нагрузок способствует увеличению синтеза мышечных белков и возрастанию силы мышц (Н. К. Попова, 1951). В среднем можно считать, что количество белка в пищевом рационе спортсмена должно составлять не менее 2 г. на 1 кг. веса тела. В периоды тренировок белка в рационе должно быть повышено до 2,5 г. на 1 кг веса. Согласно официальным рекомендациям, количество белка в пищевом рационе спортсменов в дни напряженных тренировок и соревнований для мужчин должно составлять 154—171 г. в день, из которых 77—86 г. должны быть животного происхождения. Для женщин соответственно потребность в белке составляет 120—137 г. в день, в том числе 60—69 г. животного белка. (яйца, творог, печеночные паштеты, мясо, телятина, птица, рыба, треска, судак и др. ).

Потребность в жире

При нормировании жира в питании спортсменов необходимо учитывать ряд особенностей. Так, установлено, что при скоростных и силовых нагрузках использование жиров в качестве источников энергии мышечной деятельности ограничено. В соответствии с изложенным можно считать, что в пищевых рационах спортсменов следует предусматривать умеренные количества жира, особенно при упражнениях максимальной и субмаксимальной интенсивности, а также при упражнениях, отличающихся большой продолжительностью. Согласно рекомендациям величины физиологических потребностей в пищевых веществах и энергии, для спортсменов в дни напряженных тренировок и соревнований в суточном рационе: для мужчин предусматривается 145—161 г. жира, в том числе 44—48 г. растительного масла; для женщин соответственно предусмотрено 113—129 г. жира, из которых 34—39 г. за счет растительного масла. Эти количества, безусловно, могут быть снижены в дни физических нагрузок максимальной и субмаксимальной интенсивности, а также при физических нагрузках большой продолжительности.

Потребность в углеводах

Наиболее выгодными источниками энергии мышечной работы являются углеводы. Объясняется это тем, что углеводы способны в организме окисляться как аэробным, так и анаэробным путем. Все виды спортивной нагрузки, связанной со скоростными, силовыми и другими упражнениями различной интенсивности, а также нагрузки, характеризующиеся продолжительностью упражнений, сопровождаются усилением гликолиза, появлением рабочей гипоксии и образованием различной степени кислородной задолженности. Углеводы в наибольшей степени способны использоваться в организме как источники энергии в условиях относительной гипоксии и способствовать снижению ацидотических сдвигов, возникающих в организме в процессе интенсивной мышечной работы. В соответствии с принятыми физиологическими нормами общая потребность в углеводах спортсменов в дни интенсивных тренировок и соревнований определена для мужчин 615—683 г. и для женщин 477— 546 г. в день. При расчете на 1 кг веса тела потребность в углеводах может быть определена в количестве 8—10 г. углеводов на 1 кг веса тела. В составе суточной нормы углеводов не менее одной трети ее должны составлять легкоусвояемые углеводы (сахара); остальные две трети могут быть представлены крахмалом.

Потребность в витаминах

В спортивной практике в периоды интенсивных тренировок, связанных с большой физической нагрузкой, происходит усиленное расходование мышечного аденозинтрифосфата, ресинтез которого не успевает покрыть произведенные траты. В связи с этим способствующая роль пиридоксина в быстром ресинтезе аденозинтрифосфата приобретает особую актуальность. В витаминном обеспечении спортсменов должно предусматриваться достаточно высокое включение источников витамина В6, значение которого при больших физических нагрузках получает все большее подтверждение. Помимо важной роли пиридоксина в обмене веществ и его липотропных свойств, особо важное значение пирийоксина для спортсменов имеет его свойство способствовать быстрому ресннтезу аденозинтрифосфата при больших физических напряжениях.

Имеются данные о повышенной потребности организма спортсменов в тиамине, рибофлавине, ниацине, пиридоксине, витамине B12, фолиевой, пантотеновой и парааминобензойной кислотах. Механизм действия этих витаминов при апортивнои работе еще недостаточно выяснен и нуждается в дальнейшем изучении. За последнее время придается большое значение витамину Е этому внутриклеточному антиокислителю, который получает признание как обязательный компонент в литании спортсменов. По данным у спортсменов повышена потребность в витамине Е. Значение Е в спортивной практике как фактора, нормализующего мышечную деятельность, получает все большее подтверждение. Витамин Е во многих странах включен в число стимулирующих средств при спортивных напряжениях.

Потребность в минералах

Потребность спортсменов в минеральных веществах изучена недостаточно. В настоящее время нормы потребности в минеральных веществах для спортсменов определяются в величинах, установленных для взрослого здорового человека. Однако уже сейчас можно определить некоторые общие направления обеспечения спортсменов минеральными веществами. Особенностями минерального обмена в процессе интенсивной мышечной деятельности являются ацидотические сдвиги различной выраженности, развивающиеся в организме. Ацидотические сдвиги особенно велики при выполнении упражнений максимальной и субмаксимальной интенсивности, а также при тренировка в горных условиях. Возникновение у спортсменов ацидоза неблагоприятно сказывается на состоянии организма, так как при этом в организме происходит накопление свободных кислот, изменяющих нормальную реакцию тканевых соков и снижающих выносливость организма и его устойчивость при больших физических нагрузках. Предупреждение развития ацидотических сдвигов в известной степени может быть осуществлено путем включения в состав пищевого рациона спортсменов продуктов, богатых щелочными компонентами (молоко, овощи и фрукты). В питании спортсменов наиболее выгодным источником щелочных компонентов следует признать овощи, плоды, фрукты и ягоды; соли органических кислот, входящие в их состав, в процессе превращений в организме оставляют значительный запас щелочных эквивалентов, предотвращающих развитие ацидоза. Для обеспечения щелочной ориентации питания спортсмена необходимо систематическое включение достаточно больших количеств фруктов в овощей, удельный вес которых должен составлять 15— 20%. Имеются данные (Н. Н. Яковлев, Л. Г. Лешкович, 1960), что спортивные нагрузки вызывали меньшие биохимические и функциональные сдвиги у тех спортсменов, в питании которых овощи и фрукты составляли 15—20% общей калорийности рациона. По наблюдениям авторов, при меньшем включении в пищевой рацион овощей и фруктов отмечались более резкие биохимические сдвиги и позднее наступало восстановление работоспособности. В ощелачивании организма известную роль может сыграть потребление щелочных минеральных вод (боржоми и др. ), однако ощелачивающее действие их ничтожно по сравнению с фруктами, овощами и их соками. Фруктовые и ягодные соки, а также томатный сок являются реальными источниками щелочных компонентов. Занятие спортом сопровождается повышенной потребностью в фосфоре. Обмен фосфорных соединений оказывает влияние на работу скелетных мышц, а также на деятельность сердечной мышцы. Поступление солей фосфорной кислоты играет важную роль в усилении процессов фосфорилирования в мышцах. Ионы фосфорной кислоты способствуют лучшей мобилизации углеводных ресурсов при напряженной физической работе. Кроме того, соли фосфорной кислоты усиливают гликотенолиз в печени. По данным А. Н. Крестовниковой, у спортсменов потребность в фосфоре возрастает в 1 1/2—2 раза. Источником фосфора в питании спортсменов могут служить все продукты животного происхождения: мясо, творог, яйца и др. Поступление достаточных количеств железа неразрывно связано с обеспечением высокого уровня кислородной емкости организма. Включение в пищевой рацион источников железа способствует наиболее полному построению миоглобина, являющегося резервуаром кислорода в мышцах. Имеются данные, что потребность в железе у спортсменов повышается на 20%. Отмечена также повышенная потребность в магнии. Значение магния, помимо его ощелачивающих свойств, заключается в участии образования катализаторов некоторых реакций гликолиза. В связи с большими потерями хлоридов с потом у спортсменов отмечается повышенная потребность в хлористом натрии, суточная норма которого должна быть увеличена в 1 1/2—2 раза. Потребность в некоторых минеральных веществах для спортсменов приведена в табл. 81.

 

Таблица 81 Потребность в минеральных веществах (в граммах)


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 198; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь