Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема: «Ранг матрицы. Метод Гаусса. Система m уравнений с n неизвестными».



 

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А.

Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим.

Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r, то это означает, что в матрице А имеется отличный от нуля минор порядка r, но всякий минор порядка, большего чем r, равен нулю. Ранг матрицы А обозначается через r(A).

 

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k.

 

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

 

Две матрицы называются эквивалентными, если одна из них получается из другой с помощью конечного множества элементарных преобразований.

 

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Системы линейных уравнений.

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных.

Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной.

При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

 

Рассмотрим систему трех уравнений с тремя неизвестными

Решить систему уравнений методом Гаусса:

 

x + y – 3z = 2,

3x – 2y + z = - 1,

2x + y – 2z = 0.

 

Решение.

Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

~ ;

б) третью строку умножим на (-5) и прибавим к ней вторую:

.

В результате всех этих преобразований данная система приводится к треугольному виду:

 

x + y – 3z = 2,

-5y + 10z = -7,

- 10z = 13.

 

Из последнего уравнения находим z = -1, 3.

Подставляя это значение во второе уравнение, имеем y = -1, 2.

Далее из первого уравнения получим x = - 0, 7.

Ответ: (-0, 7; -1, 2; -1, 3)

 

Системы m линейных уравнений с n неизвестными

 

Система линейных уравнений имеет вид:

 

a11 x1 + a12 x2 +… + a1n xn = b1,

a21 x1 + a22 x2 +… + a2n xn = b2, … … … …

am1 x1 + am1 x2 +… + amn xn = bm.

 

Здесь аi j и bi (i = ; j = ) – заданные, а xj – неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:

AX = B, (5.2)

где A = (аi j) – матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1, x2, …, xn)T,
B = (b1, b2, …, bm)T – векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.

Упорядоченная совокупность n вещественных чисел (c1, c2, …, cn) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2, …, xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2, …, cn)T такой, что AC º B.

Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.

Матрица

`A = ,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 344; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь