Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Пространственные группы симметрии



Построение решетки кристалла путем трансляции элементарной ячейки - это наиболее простой подход к решению данной задачи. Оказалось, что весь кристалл, в узлах кристаллической решетки которого находятся центры атомов одного и того же сорта, можно построить, исходя не из всей ячейки, а из единственного атома, повторяя его при помощи операций симметрии пространственной группы.

В пространственной группе к элементам симметрии точечной группы добавляются операции трансляций. Всего пространственных групп 230. Если система точек представляет собой решетку Бравэ, то каждую поворотную ось симметрии можно заменить винтовой, а каждую плоскость симметрии – плоскостью скользящего отражения.

В кристаллах ввиду наличия крист. решётки возможны только операции и соответственно оси симметрии до 6-го порядка (кроме 5-го; в крист. решётке не может быть оси симметрии 5-го порядка, т. к. с помощью пятиугольников нельзя заполнить пространство без промежутков), к-рые обозначаются символами: 1, 2, 3, 4, 6, а также инверсионные оси 1 (она же — центр симметрии), 2 (она же — плоскость симметрии), 3, 4, 6. Поэтому количество точечных кристаллографич. групп симметрии, описывающих внеш. форму кристаллов, ограничено, их всего 32 (см. табл.). В междунар. обозначения точечных групп входят символы порождающих их операций симметрии. Эти группы объединяются по симметрии формы элементарной ячейки (с периодами о, b, с и углами a, b, g) в 7 сингоний.

Группы, содержащие лишь повороты, описывают кристаллы, состоящие только из совместимо равных частей (группы 1-го рода). Группы, содержащие отражения или инверсионные повороты, описывают кристаллы, в к-рых есть зеркально равные части (группы 2-го рода). Кристаллы, описываемые группами 1-го рода, могут кристаллизоваться в двух энантиоморфных формах («правой» и «левой», каждая из к-рых не содержит элементов симметрии 2-го рода), но зеркально равных друг другу.

Точечные группы описывают симметрию не только кристаллов, но любых конечных фигур. В живой природе часто наблюдается запрещённая в кристаллографии симметрия с осями 5-го, 7-го порядка и выше. Напр., для описания регулярной структуры сферич. вирусов, в оболочках к-рых соблюдаются принципы плотной укладки молекул, оказалась важной икосаэдрическая точечная группа 532.

Предельные группы. Функции, к-рые описывают зависимость разл. свойств кристалла от направления, имеют определённую точечную симметрию, однозначно связанную с группой симметрии огранения кристалла. Она либо совпадает с ней, либо выше неё по симметрии

Билет 27

Вопрос 1 Учет вклада свободных электронов в теплоемкость.

Теплоёмкость электронного газа — количество теплоты, которую необходимо передать электронному газу для того, чтобы повысить его температуру на 1 К. Она намного меньше по величине при высоких температурах, чем теплоёмкость кристаллической решётки.

Вырожденный газ

Для вырожденного электронного газа в металлах теплоёмкость определяется формулой

,

где m * — эффективная масса электронов, — приведённая постоянная Планка, kB — постоянная Больцмана, μ 0 — энергия уровня Ферми, T — температура.

Теплоёмкость стремится к нулю при малых температурах, удовлетворяя теореме Нернста и линейно возрастает с температурой. Поскольку теплоёмкость кристаллической решётки при низких температурах пропорциональная кубу температуры (см. модель Дебая) то существует область низких температур, при которых теплоёмкость электронов больше чем теплоёмкость решётки. Однако при более высоких температурах, чем температура Дебая, вклад электронной подсистемы в общую теплоёмкость твёрдого тела не превышает нескольких процентов. Для этих температур справедливо

,

где — теплоёмкость кристаллической решётки.

Объясняется такое соотношение тем, что вклад в электронную теплоёмкость вносят лишь те электроны, которые имеют энергию, близкую к энергии Ферми. Электроны с энергиями, намного низшими чем энергия уровня Ферми, не могут получать тепло, поскольку для увеличения энергии им нужно было бы перейти на близкие энергетические уровне внутри зоны, уже занятые другими электронами. Из-за принципа Паули переход в занятое другим электроном состояние невозможен.

 

Энергия Фе́ рми (EF) системы невзаимодействующих фермионов — это увеличение энергии основного состояния системы при добавлении одной частицы. Это эквивалентно химическому потенциалу системы в ее основном состоянии при абсолютном нуле температур. Энергия Ферми может также интерпретироваться как максимальная энергия фермиона в основном состоянии при абсолютном нуле температур. Энергия Ферми — одно из центральных понятий физики твёрдого тела.

Физический смысл уровня Ферми: вероятность обнаружения частицы на уровне Ферми составляет 0, 5 при любых температурах.

 

Вопрос 2 Симметрия Кристаллов

Свойство кристаллов совмещаться с собой при поворотах, отражениях, параллельных переносах либо части или комбинации этих операций. Симметрия означает возможность преобразования объекта, совмещающего его с собой. Симметрия внеш. формы (огранки) кристалла определяется симметрией его атомного строения, к-рая обусловливает также и симметрию физ. свойств кристалла.

Рис. 1. а — кристалл кварца: 3 — ось симметрии 3-го, порядка, 2х, 2у, 2w— оси 2-го порядка; б — кристалл водного мета-силиката натрия: m — плоскость симметрии.

На рис. 1, а изображён кристалл кварца. Внеш. его форма такова, что поворотом на 120° вокруг оси 3 он может быть совмещён сам с собой (совместимое равенство). Кристалл метасиликата натрия (рис. 1, 6) преобразуется в себя отражением в плоскости симметрии m (зеркальное равенство).

Если F(xlx2.x3) — функция, описывающая объект, напр. форму кристалла в трёхмерном пространстве или к.-л. его свойство, а операция g(x1, х2, х3) осуществляет преобразование координат всех точек объекта, то g является операцией или преобразованием симметрии, a F — симметричным объектом, если выполняются условия:

В наиболее общей формулировке симметрия — неизменность (инвариантность) объектов и законов при нек-рых преобразованиях описывающих их переменных. Кристаллы -объекты в трёхмерном пространстве, поэтому классич. теория С. к.— теория симметрич. преобразований в себя трёхмерного пространства с учётом того, что внутр. атомная структура кристаллов — трёхмерно-периодическая, т. е. описывается как кристаллическая решётка. При преобразованиях симметрии пространство не деформируется, а преобразуется как жёсткое целое. Такие преобразования наз. ортогональными или изометрическими. После преобразования симметрии части объекта, находившиеся в одном месте, совпадают с частями, находящимися в др. месте. Это означает, что в симметричном объекте есть равные части (совместимые или зеркальные).

С. к. проявляется не только в их структуре и свойствах в реальном трёхмерном пространстве, но также и при описании энергетич. спектра электронов кристалла при анализе процессов дифракции рентг. лучей и электронов в кристаллах в обратном пространстве и т. п.

Группа симметрии кристаллов. Кристаллу может быть присуща не одна, а неск. операций симметрии. Так, кристалл кварца (рис. 1, а) совмещается с собой не только при повороте на 120° вокруг оси 3 (операция g1), но и при повороте вокруг оси 3 на 240° (операция g2), a также при поворотах на 180° вокруг осей 2х, 2у, 2w (операции g3, g4, g5). Каждой операции симметрии может быть сопоставлен элемент симметрии — прямая, плоскость или точка, относительно к-рой производится данная операция. Напр., ось 3 или оси 2х, 2у, 2w являются осями симметрии, плоскость m (рис. 1, 6) — плоскостью зеркальной симметрии и т. п. Совокупность операций симметрии (g1, g2, ..., gn) данного кристалла образует группу симметрии G в смысле матем. теории групп. Последоват. проведение двух операций симметрии также является операцией симметрии. Всегда существует операция идентичности g0, ничего не изменяющая в кристалле, наз. отождествлением, геометрически соответствующая неподвижности объекта или повороту его на 360° вокруг любой оси. Число операций, образующих группу G, наз. порядком группы.

Группы симметрии классифицируют: по числу n измерений пространства, в к-рых они определены; по числу m измерений пространства, в к-рых объект периодичен (их соответственно обозначают Gnm), и по нек-рым др. признакам. Для описания кристаллов используют разл. группы симметрии, из к-рых важнейшими являются пространственные группы симметрии. G33, описывающие атомную структуру кристаллов, и точечные группы с и м м е т р и и G30, описывающие их внешнюю форму. Последние наз. также кристаллографическими классами.

Точечные группы симметрии. Операциями точечной симметрии являются: повороты вокруг оси симметрии порядка N на угол, равный 360°/N (рис. 2, а), отражение в плоскости симметрии (зеркальное отражение; рис. 2, б), инверсия Т (симметрия относительно точки; рис. 2, в), инверсионные повороты N= (комбинация поворота на угол 360°/N с одновременной инверсией; рис. 2, г).

Рис. 2. Простейшие операции симметрии: а — поворот; б — отражение; в — инверсия; г — инверсионный поворот 4-го порядка; д — винтовой поворот 4-го порядка; е — скользящее отражение.

Вместо инверсионных поворотов иногда рассматривают зеркальные повороты N=. Геометрически возможные сочетания этих операций определяют ту или иную точечную группу симметрии, к-рая изображается обычно в стереографич. проекции. При преобразованиях точечной симметрии по крайней мере одна точка объекта остаётся неподвижной — преобразуется сама в себя. В ней пересекаются все элементы симметрии, и она является центром стереографич. проекции. Примеры кристаллов, относящихся к разл. точечным группам, даны на рис. 3.

Рис. 3. Примеры кристаллов, принадлежащих к разным точечным группам (кристаллографическим классам): о — к классу m (одна плоскость симметрии); б — к классу с (центр симметрии); в — к классу 2 (одна ось симметрии 2-го порядка); г — к классу 6 (одна инверсионно-поворотная ось 6-го порядка).

Точечные преобразования симметрии g(x1, x2, х3)=х'1, х'2, х'3 описываются линейными ур-ниями:

т. е. матрицей коэфф, (aij). Напр., при повороте вокруг оси х1 на угол a=360°/N матрица коэфф. имеет вид:

а при отражении в плоскости х1, х2 она имеет вид:

Билет 228 ( 28 )


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 537; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь