Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ГАЛОГЕНПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ



Органическая химия

Часть 1

УГЛЕВОДОРОДЫ.

ГАЛОГЕНПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

 

 

 

Рекомендовано

научно-методическим советом

университета в качестве учебного пособия

 

Ярославль

2012


ББК 24.23

О 64

УДК 547

 

 

Рецензенты: кафедра “Бионеорганическая и биофизическая химия” Ярославской государственной медицинской академии; В.Н.Казин, канд. хим. наук, доцент кафедры общей и биоорганической химии Ярославского государственного университета.

 

А.Ф.Бетнев, И.С. Колпащикова, Е.Р. Кофанов, Е.М.Алов

О 64 Органическая химия. Часть 1. Углеводороды. Галогенпроизводные углеводородов: Учебное пособие / Яросл. гос. техн. ун-т.- Ярославль, 2012.- 182 с.

ISBN 5-230-17813-2

 

В пособии рассмотрены основные вопросы строения и реакционной способности, типичные реакции и основные способы получения ациклических, карбоциклических и ароматических соединений, а также галогенпроизводных углеводородов. Пособие составлено с учетом важнейших достижений органической химии за последние годы.

Предназначено для студентов специальности «Химическая технология органических веществ», а также может быть рекомендовано для студентов заочной и дневной формы обучения всех специальностей химико-технологического факультета.

Ил. 18. Табл. 17. Библиогр. 5.

 

О     Без объявл.                         ББК 24.23

 

 

ISBN 5-230-17813-2           ã Ярославский государственный

                                                 технический университет, 2012


Введение

 

Значение химии вообще, и органической химии в особенности, трудно переоценить. Еще в 18 веке великий русский ученый М. В. Ломоносов говорил: «Широко простирает химия руки свои в дела человеческие» и с этим нельзя не согласиться – нет такой отрасли человеческой деятельности, которой бы не коснулись достижения химии.

Органическая химия – это химия соединений углерода. Вначале органическая химия определялась как химия соединений, которые образуются живой материей. Вплоть до середины 19 века многие химики считали, что органические соединения могут образовываться только в живых организмах и, следовательно, их нельзя синтезировать из неорганических веществ.

В настоящее время большинство органических соединений получают синтетически, используя в качестве сырья, в основном более простые органические соединения. Природными источниками простейших органических соединений являются нефть и уголь.

Что же характерно для соединений углерода и заставляет рассматривать их отдельно от соединений остальных ста с лишним элементов периодической системы? Прежде всего, число органических соединений во много раз превышает число неорганических соединений. А молекулы органических соединений могут быть очень большими по размеру и сложными по строению.

Каковы же особенности углерода, позволяющие ему образовывать столь большое число соединений? Атомы углерода могут соединяться друг с другом, как не могут соединяться атомы никакого другого элемента. Атомы углерода могут образовывать цепи из тысяч атомов или кольца любого размера; цепи и кольца могут иметь разветвления и перекрестные связи. Углеродные атомы, участвующие в образовании этих цепей и колец, могут быть связаны с другими атомами, в основном с водородом, а также с кислородом, азотом, серой, фосфором, галогенами и другими элементами.


Классификация органических реакций

Органические реакции классифицируют по различным признакам:

- по типу превращения субстрата;

- по типу активирования;

- по характеру разрыва связей.

Классификация по типу превращения субстрата

Реакции замещения

Замещение – реакция, в ходе которой атом водорода (или функциональная группа) в органической молекуле замещается на какую-либо функциональную группу (или атом водорода).

Реакции замещения обозначают латинской буквой S (от англ. «substitution» - замещение.

Реакции присоединения

Присоединение – реакция, в ходе которой реагент присоединяется по кратной связи (С=С, С=О, С=N) молекулы субстрата.

Реакции присоединения обозначают латинским символом         Ad (от англ. «addition» - присоединение.

Реакции элиминирования

Элиминирование – реакция, в ходе которой от субстрата отщепляется молекула или частица (вода, галогеноводород и т.д.) Этот тип превращения обозначают латинской буквой Е (от англ. «elimination» - элиминирование, отщепление.

Классификация по типу активирования

Некаталитическими являются реакции, которые не требуют присутствия катализатора. Эти реакции ускоряются только при повышении температуры. Их иногда называют термическими. Такой способ активирования обозначают значком to.

Каталитическими называют реакции, протекание которых требует присутствие катализатора. Если в качестве катализатора выступает кислота, речь идет о кислотном катализе (дегидратация спиртов). Если в качестве катализатора выступает основание, речь идет об основном катализе.

Фотохимические реакции – реакции, которые активируют облучением; такой способ активирования обозначают hn.

Алканы

Алканами называются углеводороды с открытой цепью, имеющие общую формулу CnH2n+2 и содержащие только простые углерод-углеродные связи. Алканы образуют гомологический ряд, в котором каждый член отличается от предыдущего на постоянную структурную единицу -(CH2)-, называемую гомологической разностью.

Таблица 5.1

Структурные изомеры - это соединения, имеющие одинаковый состав, но различную последовательность связывания атомов.

Физические свойства

Физические свойства алканов определяются их строением. Ковалентные связи в алканах неполярные (С-С) или малополярные  (С-Н). Эти связи симметричны, полярность их взаимно компенсируется, поэтому молекула алкана неполярна. Силы межмолекулярного притяжения сравнительно слабы. Это является причиной небольших значений плотности, температуры кипения и плавления.

Температуры кипения, плавления и плотность увеличиваются с увеличением молекулярной массы. Алканы С1...С4 - газы, С5...С16 - жидкости, далее - твёрдые кристаллические вещества. За исключением низших алканов, температура кипения повышается на 20 - 30 º С с ростом углеродной цепи на один атом углерода. Такая закономерность изменения температуры кипения характерна для гомологических рядов других классов соединений.

Изомер с разветвлённой цепью имеет более низкую температуру кипения, чем изомер нормального строения.

Понижение температуры кипения у изомеров с появлением разветвлений и увеличением их числа объясняется тем, что с увеличением разветвлений форма молекулы стремится к сферической, то есть уменьшается её поверхность, а следовательно, и межмолекулярные силы притяжения. Такая зависимость между формой молекулы и температурой кипения наблюдается и для других классов соединений.

Алканы, неполярные соединения, растворимы в неполярных растворителях (бензол, тетрахлорметан), но нерастворимы в полярных растворителях.

Химические свойства

Химические свойства алканов определяются их строением. В молекулах алканов ковалентные связи малополярные и слабополяризуемые. Поэтому они нечувствительны к ионным реагентам, инертны по отношению к кислотам, основаниям, окислителям. Для взаимодействия с ионными реагентами требуется достаточно высокая полярность атакуемых химических связей, обеспечивающая электростатическое притяжение разноименно заряженных активных центров, и/или способность атакуемой связи поляризоваться под влиянием заряда ионного реагента. Алканы в ничтожной степени обладают и тем и другим свойством.

Наиболее характерным свойством алканов является радикальное замещение незаряженного атома водорода при действии незаряженных радикальных реагентов: атомов хлора и брома при галогенировании, NO2·  при нитровании и т.д.

5.2.1. Галогенирование

Замещение водородных атомов на галогены – одна из наиболее характерных реакций предельных углеводородов. Алканы реагируют со всеми галогенами. Со свободным фтором реакция идет со взрывом. Возможны взрывы и в реакциях с хлором. В случае иода процесс ограничен равновесием, так как иодистый водород восстанавливает образующиеся иодистые алкилы.

Галогенирование метана

Хлорирование метана происходит при освещении ультрафиолетовым светом или при повышенной температуре 250 - 400 оС.

Механизм реакции:

На первой стадии молекула хлора распадается на два атома. Альтернативная возможность разрыва молекулы хлора с образованием ионов хлора (гетеролитический разрыв) не может осуществиться, поскольку для этого требуется значительно большая энергия.

Каждый атом хлора, образующийся в результате гомолитического разрыва связи, сохраняет один электрон из пары, за счет которой осуществлялась ковалентная связь.

Aтом или грyппaатомов, имeющaя нecпaренный электрон, называется свободным радикалом. Неспаренный электрон обозначают точкой.

Атом хлора очень реакционноспособен, так как стремится получить электрон для завершения электронной оболочки. При столкновении с молекулой метана он вырывает атом водорода с его электроном, образуется новый радикал СН3· (стадия 2), который также стремится завершить электронную оболочку и реагирует с молекулой хлора, что приводит к образованию хлористого метила и атома хлора (стадия 3). Реакции 2 и 3 повторяются.

При обрыве цепи реакционная способность реагирующих частиц утрачивается ввиду рекомбинации (объединения) атомов и свободных радикалов в валентно насыщенные молекулы (реакции 4, 5, 6). Поэтому для поддержания реакции требуется постоянное инициирование. В результате рекомбинации двух свободных метильных радикалов образуется побочный продукт - этан. Содержание этана в реакционной смеси невелико, так как стационарная концентрация метильных радикалов, создаваемая в условиях реакции, ничтожна мала.

При хлорировании метана одна реакция инициирования вызывает последовательность реакций, в каждой из которых регенерируется реакционноспособная частица - радикал, вызывающий следующую стадию. Такой механизм называется радикально-цепным. В благоприятных условиях хлорирование метана может пройти от 100 до 10000 циклов прежде, чем произойдет обрыв цепи.

Скорость цепной реакции сильно снижается в присутствии соединений, которые могут взаимодействовать с радикалами и превращать их в мало реакционноспособные частицы. Такие вещества называют ингибиторами. Например, кислород действует как ингибитор.

Радикал СН3ОО· значительно менее реакционноспособен, чем радикал СН3·, и не может продолжать цепь.

Нитрование

Нитрованиеалканов проводится при повышенной температуре с использованием в качестве нитрующего агента разбавленной азотной кислоты или окислов азота.

Реакция протекает по свободнорадикальному цепному механизму. При этом образуется смесь продуктов.

Сульфохлорирование:

В реакциях сульфоокисления и сульфохлорирования замещению не подвергаются атомы водорода при третичном углероде из-за пространственных затруднений для подхода реагента с большим объемом к третичному атому углерода.

Методы синтеза алканов

Алканы можно получать в практически неограниченном количестве из природного газа и нефти. Однако выделение индивидуальных углеводородов с увеличением в них числа атомов углерода является трудной задачей, так как при этом резко возрастает число изомерных соединений и одновременно уменьшаются различия в их физических свойствах. Поэтому для получения индивидуальных углеводородов используются синтетические методы.

Гидрирование галогеналканов

При каталитическом гидрировании галогеналканов в присутствии палладия образуются алканы.

Для восстановления галогеналканов можно использовать также цинк в соляной кислоте и натрий в спирте. Иодалканы могут быть восстановлены нагреванием в запаянной ампуле с иодоводородом.

Реакция Вюрца

При взаимодействии первичных галогеналканов с металлическим натрием образуются алканы с удвоенным числом атомов углерода. Эта реакция пригодна, прежде всего, для получения высших алканов симметричного строения.

В случае использования в качестве исходных соединений различных галогеналканов в результате реакции получается смесь трех углеводородов:

Эту смесь приходится разделять, что не всегда возможно.

Вместо натрия в этой реакции могут быть использованы и другие металлы, например магний, цинк, литий.

Реакционная способность галогеналканов уменьшается в ряду: R–I > R–Br > R–Cl.

Синтез Кольбе

При электролизе натриевых и калиевых солей карбоновых кислот образуются углеводороды симметричного строения.

На первой стадии происходит анодное окисление анионов кислот до радикалов RСОО ·, которые отщепляют СО2, а затем димеризуются. На катоде образуется водород и гидроксид щелочного металла.

Метод Фишера-Тропша

Каталитическое гидрирование окиси углерода протекает в присутствии катализатора, содержащего кобальт или железо, с образованием смеси алканов с небольшой молекулярной массой.


Обозначение конфигураций

Для этой цели наиболее широко используют символы R и S. Эта система обозначений предложена Р. Каном (Химическое общество, Лондон), К. Ингольдом (Университетский колледж, Лондон) и В. Прелогом (Федеральная высшая техническая школа, Цюрих).

Согласно этой системе, сначала определяют старшинство, или последовательность, заместителей, т. е. четырех атомов или групп, связанных с асимметрическим атомом углерода, исходя из правила старшинства.

Правило старшинства 1. Если с асимметрическим атомом углерода связаны четыре различных атома, то старшинство зависит от атомного номера, причем более старшим будет атом с большим атомным номером. Если два атома являются изотопами одного элемента, то преимущество имеет атом с большим массовым числом. Например, в хлориодметансульфокислоте атомы, согласно их старшинству, располагаются в следующей последовательности: I > С1 > S > Н; в a-дейтероэтилбромиде – Вг > С > О > Н.

Правило старшинства 2. Если относительное старшинство групп нельзя определить с помощью правила 1, то необходимо провести аналогичное сравнение для следующих атомов в группах (и так далее, если необходимо, двигаясь дальше от асимметрического атома углерода). Иначе говоря, если асимметрический атом углерода связан с одинаковыми атомами, то следует сравнить заместители, связанные с каждым из этих первых атомов. Например, рассмотрим втор-бутилхлорид, в котором с асимметрическим атомом углерода связаны два углеродных атома. В СН3-группе следующими атомами являются Н, Н и Н; в С2Н5-группе – С, Н, Н.

Поскольку углерод имеет больший атомный номер, чем водород, то С2Н5 старше. Таким образом, во втор-бутилхлориде заместители, согласно своему старшинству, располагаются следующим образом: С1 > С2Н5 > СН3 > Н.

В З-хлор-2-метилпентане атомы С, С и Н изопропильной группы старше С, Н и Н этильной группы и полная последовательность заместителей будет следующей: С1 > изопропил > этил > Н.

В 1, 2-дихлор-З-метилбутане группа СН2Cl старше (С1, Н, Н) изопропильной (С, С, Н). Хлор имеет больший атомный номер, чем углерод, и то, что имеется два атома углерода и только один С1, не имеет значения. (Один больший номер значит больше, чем два или три меньших.)

Правило старшинства 3. Атом, связанный двойной или тройной связью, считается соответственно за два или три атома. Таким образом,

Например, в глицериновом альдегиде ОН-группа является старшей; СНО (О, О, Н) старше СН2ОН (О, Н, Н). Полная последовательность заместителей будет –ОН > –СНО > –СН2ОН > –Н.

Фенильная группа С6Н5 рассматривается в виде одной из структур Кекуле:

В 1-амино-2-метил-1-фенилпропане, например, фенильная группа  (С, С, С) старше изопропильной (С, С, Н), но младше, чем N, который имеет больший атомный номер. Последовательность будет NН2 > С6Н5 > С3Н7 > Н.

[Согласно правилу, оба атома кратной связи удваиваются (или утраиваются), так что С=О становится . Это более простое, но менее точное правило достаточно для рассматриваемых примеров.]

Например, в случае СНСlВгI с асимметрическим атомом углерода связаны четыре различных атома, и старшинство их зависит только от атомного номера, причем, чем больше атомный номер, тем старше заместитель. Таким образом, в порядке уменьшения их старшинства атомы располагаются в следующем порядке: I > Вг > С1 > Н.

Затем молекулу располагают, так, чтобы младшая группа была направлена от наблюдателя, и рассматривают расположение оставшихся групп. Если старшинство этих групп уменьшается по часовой стрелке, то конфигурацию обозначают символом R (от латинского rectus – правый); если же старшинство этих групп уменьшается против часовой стрелки, то конфигурацию обозначают символом S (от латинского sinister – левый).

Таким образом, конфигурации I и II выглядят следующим образом:

и обозначаются соответственно символами R и S.


Полное название оптически активного соединения отражает и конфигурацию и направление вращения, как, например, (S)-(+)-втор-бутилхлорид. Рацемическую модификацию можно обозначить символом R, S, например (R, S)-втор-бутилхлорид.

Конечно, нельзя путать направление оптического вращения соединения (такого же физического свойства реального вещества, как температура кипения или плавления) с направлением нашего взгляда, когда мы мысленно располагаем молекулу каким-то определенным условным образом. Пока для определенного соединения экспериментально не установлена связь между конфигурацией и знаком вращения, нельзя сказать, знак (+) или (–) соответствует (R)- или (S)-конфигурации.

ЦИКЛОАЛКАНЫ

Углеводороды, которые содержат кольца, состоящие из углеродных атомов, связанных между собой простыми связями, называются алициклическими или циклоалканами (циклопарафинами). Ниже приведена полная и сокращенная запись структурных формул первых четырех представителей ряда циклоалканов.

Номенклатура. Изомерия

Названия циклоалканов образуются добавлением приставки цикло- к названию линейного алкана с тем же числом атомов углерода. В алициклических соединениях известны следующие виды изомерии: структурная (изомерия, связанная с различной величиной цикла, различным строением и положением в цикле боковых цепей), пространственная (геометрическая или цис-, транс-изомерия, обусловленная различным расположением групп относительно плоскости кольца) и оптическая (энантиомерия).

Примеры структурных изомеров C6H12:

Примеры геометрических изомеров:

Примеры энантиомеров:

Физические свойства

Физические свойства циклоалканов сходны со свойствами соответствующих ациклических углеводородов, хотя температуры кипения и плавления циклических соединений немного выше. В частности, малые циклоалканы – циклопропан и циклобутан – бесцветные газы, не имеющие запаха, а циклопентан и циклогексан – бесцветные жидкости с Ткип. 50, 5 и 80 оС соответственно. Циклоалканы неполярные или малополярные соединения, поэтому они хорошо растворимы в неполярных растворителях, таких как четыреххлористый углерод, эфир, и нерастворимы в сильно полярном растворителе - воде.

Типы напряжения

Несмотря на то, что и алканы и циклоалканы образованы атомами углерода, находящимися в одном и том же состоянии гибридизации (sp 3 ), циклоалканы имеют ряд структурных особенностей. Указанные особенности связаны прежде всего с напряжением молекулы при циклообразовании.

Угловое напряжение (напряжение Байера) – увеличение энергии молекулы, вызванное отклонением угла между связями от величины нормального тетраэдрического угла (109о28 ).

Торсионное напряжение (напряжение Питцера, напряжение заслоненных связей) – увеличение энергии, вызванное отклонением конформации любого этанподобного звена в молекуле циклоалкана от заторможенной.

Трансаннулярное напряжение (напряжение Прелога) - увеличение энергии молекулы вследствие взаимодействия несвязанных атомов и фрагментов (двойных связей, функциональных групп и т.д.); такой тип взаимодействия носит также название «взаимодействие через пространство, цикл»

Строение

Теория напряжения А. Байера. В 1885 г. профессор Мюнхенского университета А.Байер предложил теорию, объясняющую некоторые аспекты химии циклических соединений. Часть его теории, рассматривающая способность к раскрытию малых циклов, общепринята и сегодня, хотя сейчас она излагается с других, современных позиций.

Байер рассуждал следующим образом. Когда атом углерода связан с четырьмя другими атомами (sp3-гибридизация), между каждыми двумя связями образуется угол 109о28¢.

Предполагалось, что в молекулах циклоалканов атомы углерода являются вершинами правильных плоских многоугольников. Циклопропан представляет собой плоский правильный треугольник с углом между связями С–С, равным 60о.

В циклопропане две связи у каждого из атомов углерода не могут образовать нормальный тетраэдрический угол 109о28¢, угол между ними сжат до 60о. Такое отклонение от нормального тетраэдрического угла делает эту молекулу “напряженной” и, следовательно, неустойчивой по сравнению с молекулами с тетраэдрическими углами.

Циклоропан вступает в реакции с раскрытием кольца, поскольку при этом снимается угловое напряжение и образуются более устойчивые ациклические соединения. Чем больше отклонение от нормального угла 109о28¢, тем более “напряженной” является молекула: для циклопропана отклонение составляет 1/2(109о28¢ - 60о)= 24о44¢, а для плоского циклобутана -1/2(109о28¢ - 90о)= 9о44¢.

Поскольку искажение углов наиболее значительно в циклопропане, то он является более “напряженным”, более неустойчивым, более склонным к реакциям, протекающим с раскрытием кольца. Углы в правильном плоском пятиугольнике весьма близки к тетраэдрическим (108о), и поэтому циклопентан практически свободен от углового напряжения.

Углы в правильном плоском шестиугольнике (120о) несколько превышают тетраэдрические, на основании чего Байер предположил (ошибочно), что в циклогексане должно быть некоторое напряжение, а при переходе к циклогептану, циклооктану и т. д. отклонения от угла 109о28¢ будут увеличиваться, вследствие этого молекулы будут становиться все более напряженными.

Как согласуется теория Байера с фактами?

Полезную информацию об относительной устойчивости органических соединений дают теплоты сгорания веществ. Теплота сгорания - это количество теплоты, которое выделяется при сгорании одного моля вещества до улекислого газа и воды. Рассчитано, что для алифатических соединений сгорание метиленового звена -СН2- дает 659, 0 кДж× моль -1 .

-СН2- + О2 ® СО2 + Н2О + тепло

В основе классификации циклов, первоначально кажущейся произвольной, лежит зависимость между размером кольца и его устойчивостью.

Если циклопропан и циклобутан выделяют при сгорании больше энергии в расчете на СН2-группу, чем ациклические соединения (соответственно на 38, 5 и 27, 7 кДж/моль), то это означает, что они содержат больше энергии (см. табл. 7.1). Тогда в соответствии с теорией напряжения Байера циклопропан и циклобутан менее устойчивы по сравнению с ациклическими соединениями, и это обусловливает их склонность к реакциям с раскрытием кольца. В соответствии с теорией Байера циклы большие, чем циклогексан и циклобутан, должны быть неустойчивыми и иметь высокие теплоты сгорания. Но из таблицы 7.1 видно, что теплоты сгорания нормальных и средних циклов в расчете на одну СН2-группу мало отличаются от теплоты сгорания СН2-группы ациклических углеводородов, а для больших циклов - теплота сгорания СН2-группы практически равна этой величине. В противоположность теории Байера ни одна из этих систем не обладает меньшей устойчивостью по сравнению с ациклическими соединениями и не обнаруживает тенденции вступать в реакции раскрытия цикла подобно циклопропану.

Что же неверно в теории Байера? Только одно: Байер считал, что кольцо является плоским, но только трехчленный цикл должен быть плоским. Циклы, содержащие большее число атомов углерода, не обладают плоской конфигурацией.

Что же означает угловое напряжение с позиций современной теории? Для образования связей необходимо такое расположение атомов, при котором орбитали одного атома перекрывались бы с орбиталями другого атома. Чем больше такое перекрывание, тем прочнее связь. Когда углерод связан с четырьмя другими одинаковыми атомами, его sp3-гибридные орбитали направлены к углам тетраэдра. Образование связи происходит в результате перекрывания его sp3-орбитали с аналогичной sp3-орбиталью другого атома. Такое перекрывание наиболее эффективно и связь наиболее прочна, если два атома расположены так, что оси этих sp3-гибридных орбиталей лежат на прямой, соединяющей ядра атомов. В этом случае угол между углерод-углеродными связями С-С-С должен составлять 109о28¢ (рис. 7.1).

Рис. 7.1. Молекула алкана. Оси sp 3-гибридных облаков лежат на линии,         соединяющей ядра атомов

Таблица 7.1

Химические свойства

Химические свойства циклоалканов во многом совпадают со свойствами алканов. Для них характерны прежде всего реакции радикального замещения.

Помимо реакций свободнорадикального замещения, характерных для циклоалканов, циклопропан и циклобутан вступают в некоторые реакции присоединения с раскрытием кольца.

Гидрирование. Циклопропан реагирует с водородом в присутствии катализатора (Ni, T = 80 оС) с разрывом кольца.

Циклобутан также взаимодействует с разрывом цикла, но при более высокой температуре 200 оС.

Пятичленный цикл разрывается только при значительно более высокой температуре 300 оС.

Циклогексан в этих условиях дегидрируется, кольцо сохраняется.

Галогенирование . Реакция с бромом также идет по-разному в зависимости от размера цикла.

Циклобутан не взаимодействует с бромом подобным образом.

Циклопентан и циклогексан реагируют с галогенами (Cl2, Br2) по механизму радикального замещения.

Гидрогалогенирование. Циклопропан взаимодействует с иодоводородом, как ненасыщенное соединение - присоединяет галогеноводород, при этом происходит раскрытие цикла.

Остальные циклопарафины с галогеноводородами не реагируют.

В реакциях циклоалканов проявляется различие в свойствах малых циклов и пяти-, шестичленных циклов. Циклопропан, а также циклобутан (в меньшей степени) вступают в реакции присоединения, проявляя свойства ненасыщенных соединений.

 

Способы получения

Диеновый синтез

Алкены

Углеводороды состава СnН2n с открытой цепью, содержащие одну двойную связь, называются алкенами. Простейшим углеводородом этого ряда является этилен СН2=СН2. Атом углерода в этилене находится в sp2-гибридном состоянии (тригональный углерод). За счет трех гибридизованных орбиталей каждый атом углерода образует три s-связи: одну - с соседним атомом углерода, две - с двумя атомами водорода. Боковое перекрывания двух -орбиталей атомов углерода дает p-связь и делает невозможным вращение вокруг s-связи углерод-углерод. Этим обусловлено явление геометрической изомерии.

Геометрические изомеры (состав и способ связывания атомов одинаков, расположение групп и атомов в пространстве различно). Для названия этих изомеров используется Е, Z-номенклатура. При этом возможно использование классических цис- и транс-обозначений для определения пространственного расположения одинаковых или сходных групп относительно плоскости сравнения.

Одинаковые по старшинству группы расположены по разные стороны от плоскости двойной связи. В этом соединении два метильных радикала находятся в цис-положении.   Одинаковые по старшинству группы расположены по одну сторону от плоскости двойной связи. В этом соединении два метильных радикала находятся в транс-положении.

Относительное старшинство заместителей при каждом атоме углерода с двойной связью определяется по атомному номеру:    Н (атомный номер - 1) - младший, С (атомный номер - 6) - старший заместитель; если атомы при углероде с двойной связью одинаковы, то рассматривается старшинство последующих атомов: - СН3 (последующие атомы - Н, Н, Н) - младший заместитель; -СН(СН3)2 (последующие атомы - Н, С, С) - старший заместитель.

Физические свойства

Физические свойства алкенов в основном сходны с соответствующими свойствами алканов. Алкены нерастворимы в воде, но хорошо растворимы в неполярных растворителях, таких как бензол, тетрахлорметан. Их плотность меньше плотности воды. Так же как и в случае алканов, температуры кипения повышаются на 20 - 30 оС при увеличении длины цепи на один атом углерода (за исключением низших алкенов). Разветвление углеродной цепи в молекулах изомеров понижает температуру кипения (табл. 8.1).

цис-Изомер менее симметричен, чем транс-изомер, поэтому его упаковка в кристаллической решетке менее плотная, что обусловливает, как правило, более низкую температуру плавления цис-изомера.

Алкильная группа подает электроны к углероду с двойной связью. Это объясняется разной гибридизацией атомов углерода. Углерод в состоянии sp 2-гибридизации сильнее притягивает электроны, чем углерод в состоянии sp 3-гибридизации. Поэтому связь поляризована.

Таблица 8.1

Физические свойства алкенов

Название Формула Тпл, º С Ткип, º С Плотность, г/см3
Этен СН2=СН2 -169 -102, 0
Пропен CH2=CH–CH3 -188 -48, 0
1-Бутен СН2=СН–СH2–СН3 -185 -6, 5
1-Пентен СН2=СН–(СН2)2–СН3 -185 30, 0 0, 643
1-Гексен СН2=СН–(СН2)3–СН3 -138 63, 5 0, 675
1-Гептен СН2=СH–(СН2)4–СН3 -119 93, 0 0, 698
цис-2-Бутен -139 4, 0
транс-2-Бутен   -106 1, 0
Метилпропен CH2=C(CH3)2 -141 -7, 0

Химические свойства

Атом или группа атомов, которая определяет свойства какого-либо класса органических соединений, называется функциональной группой. В алкенах функциональной группой является двойная углерод-углеродная связь. В алкене более сложном, чем этилен, присутствуют алкильные группы. В определенных условиях алкильные группы в этих молекулах могут вступать в реакции, типичные для алканов. Однако характерными реакциями алкенов являются реакции по двойной углерод-углеродной связи.

Когда имеется сложная молекула с несколькими функциональными группами, то можно ожидать, что свойства этой молекулы будут сочетать свойства различных функциональных групп. Однако свойства отдельной группы будут несколько изменяться под влиянием других групп, и важно понимать эти изменения.

Двойная связь состоит из прочной s-связи и менее прочной     p-связи. Типичными реакциями двойной связи являются реакции, в которых происходит разрыв менее прочной p-связи и образование вместо нее двух более прочных s-связей. Такие реакции называются реакциями присоединения. Они обозначаются символом                Аd ( Addition - присоединение).


Поделиться:



Последнее изменение этой страницы: 2019-05-18; Просмотров: 241; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.119 с.)
Главная | Случайная страница | Обратная связь