Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Элементы математического анализа
- Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции; - определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке; - решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой. В повседневной жизни и при изучении других предметов: - пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах; - соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.); - использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса Статистика и теория вероятностей, логика и комбинаторика - Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения; - оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями; - вычислять вероятности событий на основе подсчета числа исходов. В повседневной жизни и при изучении других предметов: - оценивать и сравнивать в простых случаях вероятности событий в реальной жизни; - читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков Текстовые задачи - Решать несложные текстовые задачи разных типов; - анализировать условие задачи, при необходимости строить для ее решения математическую модель; - понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков; - действовать по алгоритму, содержащемуся в условии задачи; - использовать логические рассуждения при решении задачи; - работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи; - осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии; - анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту; - решать задачи на расчет стоимости покупок, услуг, поездок и т.п.; - решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью; - решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек; - решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнó й оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.; - использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п. В повседневной жизни и при изучении других предметов: - решать несложные практические задачи, возникающие в ситуациях повседневной жизни Геометрия - Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей; - распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб); - изображать изучаемые фигуры от руки и с применением простых чертежных инструментов; - делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу; - извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; - применять теорему Пифагора при вычислении элементов стереометрических фигур; - находить объемы и площади поверхностей простейших многогранников с применением формул; - распознавать основные виды тел вращения (конус, цилиндр, сфера и шар); - находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул. В повседневной жизни и при изучении других предметов: - соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями; - использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания; - соотносить площади поверхностей тел одинаковой формы различного размера; - соотносить объемы сосудов одинаковой формы различного размера; - оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников) Векторы и координаты в пространстве - Оперировать на базовом уровне понятием декартовы координаты в пространстве; - находить координаты вершин куба и прямоугольного параллелепипеда История математики - Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки; - знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей; - понимать роль математики в развитии России Методы математики - Применять известные методы при решении стандартных математических задач; - замечать и характеризовать математические закономерности в окружающей действительности; - приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства
Выпускник получит возможность научиться: Элементы теории множеств и математической логики - Оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости; - оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример; - проверять принадлежность элемента множеству; - находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости; - проводить доказательные рассуждения для обоснования истинности утверждений. В повседневной жизни и при изучении других предметов: - использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений; - проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов Числа и выражения - Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб; - приводить примеры чисел с заданными свойствами делимости; - оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и π; - выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства; - находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; - пользоваться оценкой и прикидкой при практических расчетах; - проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические функции; - находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования; - изображать схематически угол, величина которого выражена в градусах или радианах; - использовать при решении задач табличные значения тригонометрических функций углов; - выполнять перевод величины угла из радианной меры в градусную и обратно. В повседневной жизни и при изучении других учебных предметов: - выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства; - оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира
Уравнения и неравенства - Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы; - использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных; - использовать метод интервалов для решения неравенств; - использовать графический метод для приближенного решения уравнений и неравенств; - изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств; - выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями. В повседневной жизни и при изучении других учебных предметов: - составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов; - использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач; - уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи Функции - Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; - оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции; - определять значение функции по значению аргумента при различных способах задания функции; - строить графики изученных функций; - описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения; - строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.); - решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков. В повседневной жизни и при изучении других учебных предметов: - определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.); - интерпретировать свойства в контексте конкретной практической ситуации; - определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)
|
Последнее изменение этой страницы: 2019-05-18; Просмотров: 337; Нарушение авторского права страницы