Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Поиск и конструирование соединений лидеров



История медицинской химии

Впервые курс медицинской химии был прочитан в МГУ в 1998 году. Как наука медицинская химия сформировалась к 1970 году.

В 19 веке медицинская химия начала прогрессировать. Были выделены средство против малярии из хинного дерева, морфин, салициловая кислота (противомикробное средство).

В 1888 году Байер впервые в мире поставил промышленное производство фенацетина

а в 1899 году – производство аспирина

К этому времени люди научились анализировать белки, жиры и углеводы, которые являются основными мишенями действия лекарственных препаратов.

В 1910 году Пауль Эрлих изобрел средство от сифилиса – сальварсан

Это обусловило возникновение концепции химиотерапии. Концепция химиотерапии предполагает не просто применение химических веществ для лечения патологий, но и необходимость модификации структур предполагаемых лекарственных соединений с тем чтобы максимально эффективно воздействовать на пораженный орган.

Эрлих также разработал теорию рецепторов и структурных изменений физиологически активных органических соединений, происходящих при их взаимодействии с рецепторами. Эта теория явилась отправной точкой для медицинской химии.

В 1928 году был открыт пенициллин, а в 1944 году Ваксберг открыл стрептомицин. Так началась эра антибиотиков.

В 60-ые годы были разработаны психотропные препараты: аминазин, мекробамат (транквилизатор).

а также резерпин, метилдофа (сердечно-сосудистые препараты).

Все эти препараты были открыты «на ощупь». Ученые продолжали искать ФАВ.

ФАВ (БАВ) – физиологически (биологически) активные вещества.

С другой стороны, проникновение компьютерных методов в органическую химию привело к бурному развитию методов расчета структуры молекул (геометрия и конформация, заряды, молекулярные орбитали, электростатические потенциалы, топологические индексы и т.д.). В силу этого количественное описание структурных особенностей даже очень сложных молекул биологического уровня становится обычным инструментом химика-органика.

В 70-ых годах была создана методологическая основа для возникновения и использования рациональных подходов к синтезу ФАВ, которая называется drug design. Это привело к формированию медицинской химии с ее современным аппаратом.

Медицинская химия – междисциплинарная наука, в ней задействованы органическая, биоорганическая, фармацевтическая химии, фармакология и биохимия. Но они не дают ответа на вопросы: «Какую структуру надо синтезировать, чтобы создать ФАВ? », «Какую структурную формулу спрогнозировать для конкретного кандидата в лекарство? ». Эти вопросы являются центральными для медицинской химии.

Предметом медицинской химии является поиск и структурный дизайн ФАВ, выявление взаимосвязи химической структуры и физиологической активности и решение обратной задачи «строение-свойство», а именно конструирование необходимых структур обладающих заданным свойством.

Процесс поиска и конструирования включает в себя три основные стадии:

  1. Поиск соединения лидера (lead compound).
  2. Оптимизация соединения лидера.
  3. Разработка лекарственного препарата.

Стратегия поиска лекарственных препаратов зависит от накопленных знаний о препаратах, мишени, их взаимодействия и т.д. Под названием «мишень» понимают клетки, ткани, органы, функциональные системы, ферменты, акцепторы, рецепторы.

Рецепторы по Эрлиху – это небольшой участок химически определенный на большой молекуле протоплазмы, участвующей в питании и метаболизме клетки, и способный связывать специфические антигены или лекарственные вещества.

Антигены – вещества, которые воспринимаются организмом как чужеродные и вызывают специфический иммунный эффект.

Рецепторы – главным образом белковые структуры, функции которых заключаются в узнавании химического сигнала и последующей его трансформации в адекватный ответ клетки. Другими словами рецепторы представляют собой материальные субстраты активности и чувствительности клеток.

Возможны четыре ситуации при начале поиска лекарственного средства:

  1. Структура как рецептора, так и лиганда неизвестны. Рецептор является мишенью лекарственного вещества в организме, а понятие лиганд предполагает любое эндогенное (endon – внутри) соединение, взаимодействующее с этим рецептором в организме.
  2. Известна только структура рецептора.
  3. Известна только структура лиганда.
  4. Известна структура как рецептора, так и лиганда.

Комбинаторный синтез

В недавнем прошлом открытие лекарственного средства начиналось с индивидуального синтеза сотен, а иногда и тысяч аналогов малоактивного препарата, в надежде повысить его активность и селективность, с одновременным снижением токсичности. В среднем, для достижения поставленной цели необходимо было синтезировать более 10 000 соединений, а чтобы получить это молекулярное множество, один человек должен был бы работать около 1000 лет.

В настоящее время поиск новых лекарственных препаратов строится на принципиально новой основе.

Теперь все начинается с расшифровки структуры генов, кодирующих белки, ответственные за проявление тех или иных биологических функций. Затем эти “ мишени ” ( targets ) получают в чистом виде и создают специальные тестовые системы, позволяющие уже не in vivo, а микрометодами, in vitro, определять биологическую активность как давно синтезированных так и вновь получаемых веществ.

Таким образом находят биологически активную структуру ( hit compounds ), которую модифицируя преобразуют в соединение-лидер ( lead compounds ), в результате оптимизации свойств которого получают лекарственное соединение ( clinical candidate ). Схематично этот процесс можно выразить следующим образом:

Идентификация мишени

Синтез молекулярного множества, скрининг

Определение строения и идентификация хита

Оптимизация хита

Создание соединения-лидера

Оптимизация соединения-лидера

Потенциальное лекарственное средство

Успехи геномики свидетельствуют о том, что в ближайшее десятилетие будет получено около 2000 новых мишеней и темп скрининга придется повышать, несмотря на то, что уже в настоящее время удается подвергнуть скринингу до 100 тысяч соединений в расчете на одну мишень. Поэтому если ранее скрининг отставал от синтеза, то теперь ситуация изменилась: вдобавок к образцам сотен тысяч уже известных органических веществ, составляющих так называемые исторические библиотеки, понадобилось быстро получать миллионы соединений.

Подобную задачу способно решить только особое направление в органической химии, так называемый комбинаторный синтез, позволяющий специальными приемами быстро синтезировать обширные коллекции веществ с похожей структурой, так называемые библиотеки.

Комбинаторный синтез – это одна из наиболее быстро развивающихся в последнее время областей фармацевтической индустрии. Он является наиболее важным инструментом для создания новых лекарственных препаратов. Что же такое комбинаторный синтез и почему он так важен?

Говоря попросту, комбинаторный синтез является способом получения большого числа соединений за короткое время. При этом используются обычные реакционные пути и традиционный набор исходных материалов и реагентов.

Обычно химик получает соединение, которое он выделяет, очищает и идентифицирует. При комбинаторном синтезе делается акцент на получение смеси. Строение соединения необязательно устанавливать. Необязательно выделять и очищать. Вместо этого каждую смесь тестируют на биологическую активность целиком. Если смесь не проявляет активность, то нет необходимости эту смесь более изучать и ее сохраняют. Если активность проявляется, то уже требуется идентификация каждого компонента смеси. В известном смысле комбинаторный синтез выглядит как синтетический эквивалент природного первичного океана-бульона, в котором происходил в течение эволюции случайный синтез различных химических молекул, немногие из которых проявляли биологическую активность.

Комбинаторный синтез используется в основном в двух направлениях:

Жидкофазный синтез

Преимущества:

  1. Жидкофазный синтез возможен при использовании всех известных синтетических методов без каких либо ограничений
  2. Реакция проходит в гомогенных условиях
  3. Можно легко использовать нагревание
  4. Реакцию можно контролировать
  5. Возможна очистка и анализ продуктов реакции на каждой стадии

Недостатки:

  1. После окончания реакции все целевые соединения и побочные продукты находятся в смеси и требуется их разделение
  2. При использовании избытка реагентов, для достижения хороших выходов продуктов, эти реагенты необходимо тщательно очищать
  3. В том случае, если реагенты, продукты и побочные соединения невозможно перегнать или они не выпадают в осадок, их можно разделить или очистить только экстракцией или хроматографически, что обычно требует большого времени
  4. Автоматизация процессов очистки соединений в растворе весьма затруднительна

Процессы создания библиотек путем реакций в растворе делятся на параллельный синтез и синтез смесей.

Параллельный синтез протекает как обычные реакции, только их много, и они идут одновременно в отдельных реакционных сосудах. В этом случае в конце превращения регенты и побочные продукты летучи, их выпаривают. Если это невозможно, иногда используют кислотно-основную экстракцию или колоночную хроматографию. Это обычно затруднительно при наличии большого числа получаемых соединений.

Все это приводит к тому, что жидкофазный способ создания библиотек относительно мало распространен.

Твердофазный синтез

В органической химии нет ни одной реакции, обеспечивающей на практике количественные выходы целевых продуктов в любом случае. Единственное исключение составляет, по-видимому, полное сжигание органических веществ в кислороде при высокой температуре до СО2 и Н2О. Поэтому очистка целевого продукта является сложной и трудоемкой задачей. Например, 100%-ная очистка продуктов пептидного синтеза является трудноразрешимой проблемой. Действительно, первый полный синтез пептида, гормона окситоцина (1953 г), содержащего всего 8 аминокислотных остатков, рассматривался как выдающееся достижение, принесшее его автору, В. дю Виньо, Нобелевскую премию 1955 г. Однако уже в следующие двадцать лет синтезы полипептидов подобной сложности превратились в рутину, так что в настоящее время синтез полипептидов, состоящих из 100 и более аминокислотных остатков, уже не рассматривается как непреодолимо трудная задача. Что вызвало столь драматические изменения в области синтеза полипептидов?

Дело в том, что в начале 60-х годов был предложен новый подход к решению проблем выделения и очистки, возникающих в пептидном синтезе. Позже автор открытия этого подхода, Р.Б. Меррифилд, в своей Нобелевской лекции рассказал, как это произошло: “Однажды у меня возникла мысль о том, как может быть достигнута цель более эффективного синтеза пептидов. План состоял в том, чтобы собирать пептидную цепь постадийно, причем во время синтеза цепь должна быть одним концом привязана к твердому носителю”. В результате выделение и очистка промежуточных и целевых производных пептидов сводились просто к фильтрованию и тщательной промывке твердого полимера для удаления всех избыточных реагентов и побочных продуктов, остающихся в растворе. Такая механическая операция может быть выполнена количественно, легко стандартизируется и может быть даже автоматизирована. Рассмотрим эту процедуру более подробно.

Полимерный носитель в методе Меррифилда – это гранулированный сшитый полистирол, содержащий хлорметильные группы в бензольных ядрах. Эти группы превращают полимер в функциональный аналог бензилхлорида и сообщают ему способность легко образовывать сложноэфирные связи при реакции с карбоксилат-анионами. Конденсация такой смолы с N-защищенными аминокислотами ведет к образованию соответствующих бензиловых эфиров. Удаление N-защиты из дает С-защищенное производное первой аминокислоты, ковалентно связанное с полимером. Аминоацилирование освобожденной аминогруппы N-защищенным производным второй аминокислоты с последующим удалением N-защиты приводит к аналогичному производному дипептида также привязанному к полимеру:

Такой двустадийный цикл (удаление защиты-аминоацилирование) может быть, в принципе, повторен столько раз, сколько требуется для наращивания полипептидной цепи заданной длины.

Использование твердого носителя само по себе еще не может упростить решение проблемы отделения n-звенного пептида от его (n-1)-членного предшественника, поскольку оба они привязаны к полимеру. Однако этот подход позволяет безопасно использовать большие избытки любого реагента, необходимые для достижения практически 100%-ной конверсии (n-1)-членного предшественника в n-членный пептид, так как привязанные к носителю целевые продукты на каждой стадии могут быть легко и количественно освобождены от избыточных реагентов (что было бы весьма проблематично при работе в гомогенных системах).

Сразу же стало понятно, что возможность очистки продукта после каждой реакции путем простого фильтрования и промывки, и то, что все реакции можно проводить в одном реакционном сосуде, составляют идеальные предпосылки для механизации и автоматизации процесса. Действительно, всего три года потребовалось для разработки автоматической процедуры и аппаратуры, позволяющих выполнять программируемый синтез полипептидов с заданной последовательностью аминокислотных остатков. Первоначально и сама аппаратура (емкости, реакционные сосуды, шланги), и система управления были очень примитивны. Тем не менее, мощь и эффективность общей стратегии были убедительно продемонстрированы рядом пептидных синтезов, выполненных на этом оборудовании. Так, например, с помощью такой полуавтоматической процедуры был успешно выполнен синтез природного гормона инсулина, построенного из двух полипептидных цепей (состоящих из 30 и 21 аминокислотных остатков), связанных дисульфидным мостиком.

Твердофазная техника приводила к существенной экономии труда и времени, необходимых для пептидного синтеза. Так, например, ценой значительных усилий Хиршмен с 22 сотрудниками завершили выдающийся синтез фермента рибонуклеазы (124 аминокислотных остатка) с помощью традиционных жидкофазных методов. Почти одновременно тот же белок был получен путем автоматизированного твердофазного синтеза. Во втором случае синтез, включающий 369 химических реакций и 11 931 операцию, был выполнен двумя участниками (Гатте и Меррифилд) всего за несколько месяцев (в среднем до шести аминокислотных остатков в день присоединялись к растущей полипептидной цепи). Последующие усовершенствования позволили построить полностью автоматический синтезатор.

Метод Меррифильда и послужил основой для нового направления органического синтеза – комбинаторной химии.

Хотя иногда комбинаторные эксперименты проводятся в растворах, но в основном, они осуществляются с использованием твердофазной техники – реакции протекают с использованием твердых подложек в виде сферических гранул полимерных смол. Это дает ряд преимуществ:

  1. Различные исходные соединения могут быть связаны с отдельными гранулами. Затем эти гранулы смешиваются и, таким образом, все исходные соединения могут взаимодействовать с реагентом в одном эксперименте. В результате продукты реакции образуются на отдельных гранулах. В большинстве случаев, смешивание исходных в традиционной жидкой химии приводит обычно к неудачам – полимеризации или осмолению продуктов. Эксперименты на твердой подложке исключают эти эффекты.
  2. Поскольку исходные материалы и продукты связаны с твердой подложной, то избыток реагентов и не связанных с подложкой продуктов можно легко отмыть от полимерной твердой подложки.
  3. Можно использовать большие избытки реагентов, для того чтобы провести реакцию до конца (больше, чем 99%), поскольку эти избытки легко отделяются.
  4. В случае использования низких объемов загрузок (менее 0, 8 ммоль на грамм подложки) можно исключить нежелательные побочные реакции.
  5. Интермедиаты в реакционной смеси связаны с гранулами и их нет необходимости очищать.
  6. Индивидуальные гранулы полимера могут быть разделены в конце эксперимента и таким образом получаются индивидуальные продукты.
  7. Полимерная подложка может быть регенерирована в тех случаях, когда подобраны условия разрыва и выбраны соответствующие якорные группы – линкеры.
  8. Возможна автоматизация твердофазного синтеза.

Необходимыми условиями проведения твердофазного синтеза, кроме наличия нерастворимой полимерной подложки, инертной в реакционных условиях, являются:

  1. Присутствие якоря или линкера – химической функции, обеспечивающей связь подложки с наносимым соединением. Он должен быть ковалентно связан со смолой. Якорь также должен являться реакционно-способной функциональной группой для того, чтобы субстраты могли взаимодействовать с ним.
  2. Связь, образующаяся между субстратом и линкером должна быть стабильна в условиях реакции.
  3. Должны существовать способы разрыва связи продукта или интермедиата с линкером.

Рассмотрим подробнее отдельные компоненты твердофазного метода синтеза.

Твердая подложка

Как сказано выше, первыми типами смол, которые использовал Меррифильд, были полистирольные гранулы, где стирол был сшит с 1% дивинилбензола. Гранулы были модифицированы хлорметильными группами (линкер), с которыми аминокислоты могли быть соединены через эфирные группы. Эти эфирные связи стабильны в реакционных условиях, которые применялись для петидного синтеза.

Одним из недостатком полистирольных гранул является то факт, что они гидрофобны, тогда как растущая пептидная цепь гидрофильна. В результате, иногда растущая пептидая цепь не сольватируется и сворачивается за счет образования внутримолекулярных водородных связей. Такая форма затрудняет доступ новых аминокислот к концу растущей цепи. Поэтому часто используются более полярные твердые подложки, такие как полиамидные смолы. Такие смолы более пригодны для непептидного комбинаторного синтеза.

Выбор твердой подложки

Синтетические подходы к получению библиотек часто определяются природой выбранной полимерной подложки. Гранулированный полимер должен соответствовать некоторым критериям, в зависимости от стратегий синтеза и скрининга.

Для получаемых библиотек имеют важное значение размер и однородность гранул, а также устойчивость смолы к формированию кластеров. Способность смолы к набуханию в органической и водной среде особенно важна, когда используются обязательные пробы для скрининга структуры, находящейся еще на грануле.

Основные типы полимерных смол для комбинаторного синтеза используемые в настоящее время:

  1. Полистирол, сшитый с 0, 5-2% дивинилбензола (StratoSpheres)
  2. Полиэтиленгликоль, привитый на сшитом сополимере полистирол- 1% дивинилбензол (TentaGel, AgroGel, NovaGel)
  3. Полиэтиленгликоль, привитый на 1% сшитый полистирол (PEG-PS)
  4. Полистирольная макропористая смола с высокой степью сшивки (AgroPore, TentaPore)
  5. Сополимер бис-2-акриламидполиэтиленгликоль-моноакриламидо-полиэтиленгликоль (PEGA)
  6. Диметилакриламид нанесенный на макропористую матрицу кизельгура (Pepsyn K)
  7. Диметилакриламид нанесенный на макропористую матрицу – сшитый 50% полистирол-дивинилбензол (Polyhipe)

Хотя классические гранулированные смолы больше подходят для комбинаторного синтеза библиотек соединений, иногда используются альтернативные носители.

Например, целлюлоза является хорошей подложкой для многократного “капельного синтеза” пептидов или для синтеза библиотек на бумаге. “Капельные” синтезы проводят путем капания растворов защищенных аминокислот на модифицированную бумагу в присутствии активирующего реагента. Здесь реакционным сосудом является непосредственно носитель и нет необходимости манипуляций, характерных для жидких сред в течение синтеза (обычно встряхивание в случае твердофазного синтеза). Реакция идет за счет диффузии жидкости в носителе. Этот принцип внутреннего объемного синтеза был проверен при использовании полимерных носителей на синтезаторе, использующем центрифугирование для устранения жидкости. Было найдено, что капельная техника сопоставима с классическим функционированием твердой фазы в пептидном синтезе.

Было также найдено, что хлопок (вата), как самая чистая форма целлюлозы может служить удобной подложкой твердой фазы, особенно для множественного синтеза или генерирования библиотеки.

Хотя гранулы и являются наиболее распространенной формой твердой положки, но и другие виды (например, иглы) могут также использоваться для комбинаторного синтеза. Модифицированная стеклянная поверхность также может быть применена для олигонуклеотидного синтеза.

Линкеры

Линкер – это молекулярный фрагмент, ковалентно связанный с твердой подложкой. Он содержит реакционноспособные функциональные группы, с которыми взаимодействует первый реагент и который в результате становится связанным со смолой. Образующаяся связь должна быть стабильной в реакционных условиях, но легко разрываться на конечной стадии синтеза.

Различные линкеры используются в зависимости от того, какая функциональная группа присутствует в субстрате и от того, какая функциональная группа должна быть сформирована в конце процедуры.

В практике комбинаторного синтеза чаще всего используются следующие линкеры:

  • Хлорметильный (-CH2Cl),
  • Гидроксильный (-OH),
  • Аминный (-NH2),
  • Альдегидный (-CHO),
  • Силильный (-OSiR3).
Тип линкера Тип смолы Что присоединяет Что синтезирует Чем осуществляется разрыв
Галогенметил Карбоновые кислоты, спирты, фенолы, тиолы, амины Кислоты, спирты, сложные эфиры, тиоэфиры TFMSA, H2/Pd, i-Bu2AlH, MeONa, HF
Галогенметил Алкил и ариламины Анилиды и сульфамиды CF3COOH, SOCl2/CF3COOH
Галогенметил Спирты, кислоты, фенолы, тиолы, амины Спирты, кислоты, тиолы, амины, сложные эфиры 1-5% CF3COOH, 30% гексафторизопропанол
Гидроксил Спирты, кислоты Спирты, кислоты, амиды CF3COOH, амин/AlCl3, i-Bu2AlH
Гидроксил Спирты, кислоты Спирты, кислоты 5% CF3COOH, 10% AcOH
Гидроксил Кислоты Кислоты Свет с длиной волны 365 нм. Линкер стабилен к CF3COOH и пиперидину
Гидроксил Кислоты Амиды кислот, спирты, сложные эфиры, гидразиды Нуклеофилы (NaOH, NH3/MeOH, NaBH4/EtOH, MeOH/CF3COOH, NH2NH2/DMF
Гидроксил Защищенные пептиды, ки-слоты Циклические пепти-ды, мочевины 25% CF3COOH, гидразиды
Гидроксил Линкер Ринкера Спирты, кисло-ты, фенолы Спирты, кислоты, фенолы 1-5% CF3COOH
Амино Кислоты Карбоксамиды 95% CF3COOH
Амино Кислоты Защищенные амиды 1% CF3COOH
Амино Кислоты Альдегиды и кетоны LiAlH4 и реактивы Гриньяра
Амино Карбоновые кислоты Амиды или карбоновые кислоты Активация сульфонамида диазометаном или бромацетонитрилом с последующей атакой нуклеофилом амина или гидроксида
Альдегид Первичные или вторичные спирты Спирты 95% CF3COOH/H2O или CF3COOH/CH2Cl2/EtOH
Альдегид Амины Карбоксамиды, сульфонамиды CF3COOH

Смолы Ванга могут быть использованы в пептидном синтезе посредством N-защищенной аминокислоты, связанной с линкером эфирной связью. Такая эфирная связь устойчива к сочетанию и стадии снятия защиты, но может быть разрушена трифторуксусной кислотой для снятия конечного пептида с гранулы смолы.


Субстраты с карбоксильной группой могут быть связаны со смолой Ринка через амидную связь. Как только процедура заканчивается, взаимодействие с трифторуксусной кислотой освобождает продукт с первичной амидной группой.

Первичные и вторичные спирты могут быть связаны со смолой, модифицированной дигидропираном. Связывание спирта происходит в присутствии 4-толуолсульфоната в дихлорметане. Снятие продукта происходит с использованием трифторуксусной кислоты:

Основные принципы

Комбинаторный синтез часто используется для получения смесей продуктов. Для этого используется широкий набор исходных материалов и реагентов. Это не значит, что все возможные исходные материалы сразу помещены один реакционный сосуд. Планирование комбинаторного синтеза означает стремление к минимизации труда и максимизации числа получаемых структур.

Для примера, предположим, что мы хотим синтезировать все возможные дипептиды из пяти различных аминокислот. Используя традиционную химию их можно получать по одному. Таким образом, 25 возможных дипептидов будут получены в 25 отдельных экспериментах.

Однако используя комбинаторную химию все они могут быть получены с гораздо меньшим трудом. Если все пять различных аминокислот отдельно связать с гранулами смолы, то эти гранулы затем могут быть смешаны вместе. Таким образом, можно получить все возможные дипептиды путем взаимодействия со второй аминокислотой за пять экспериментов. Например, в одном эксперименте пять различных аминокислот будут реагировать с глицином, давая пять из 25 возможных дипептидов:

Эта смесь затем может быть протестирована на биологическую активность. Если результаты положительные, то усилия будут направлены на идентификацию того дипептида, который проявляет активность. Если активности нет, то эта смесь будет отставлена и отправлена на хранение. Полученные смеси не выбрасываются. Хотя они и не содержат соединения-лидера, но они могут содержать лидер для другой области медицинской химии. Все эти смеси как активных, так и не активных соединений, образующихся при комбинаторном синтезе, сохраняются и носят название “комбинаторных библиотек”. Последовательная обработка связанных аминокислот другими кислотами из приведенного набора даст 5 смесей состоящих из 25 пептидов.

Мы привели пример получения 25 соединений за пять синтезов. Однако, используя комбинаторный синтез имеется возможность получения тысяч или даже миллионов соединений.

Принцип “смешай и раздели”

В случае когда генерируются большие количества различных структур очень важно минимизировать объем работ. В этом случае очень хорошие результаты дает так называемый принцип смешивания и разделения ( mix and split method ). Этот принцип лучше проиллюстрировать на примере. Предположим, что мы хотим получить все возможные трипептиды из трех различных аминокислот (например, Gly, Val, Ala). Для это применим метод смешивания и разделения:

Стадия 1 – свяжем каждую аминокислоту с твердой подложкой

Стадия 2 – смешаем все гранулы вместе и поделим смесь на три равные части

Стадия 3 – проведем реакции каждой части с разными аминокислотами

Стадия 4 – выделим все гранулы, смешаем затем их все вместе и поделим
на три равные части. Каждая часть сейчас содержит все 9 возможных дипептидов

Стадия 5 – проведем реакции каждой порции с тремя аминокислотами

В результате мы получили все 27 возможных трипептида всего за три эксперимента вместо 27 по классической схеме. В этом примере происходило связывание между собой аминокислот, но по эту стратегию можно использовать для связывания вместе и других мономерных единиц или комбинации химических структур.

Этот принцип используется в методе комбинаторного синтеза “ одна гранула – одно соединение ” ( One-Bead – One-Compound или ОГОС ). В этом случае одна гранула связывается только с одим типом молекул, хотя их может находиться на этой грануле диаметром 100 микрон до триллиона копий. Этот метод позволяет, с одной стороны, создавать библиотеки олигомеров. Описаны созданные на основе этого метода библиотеки пептидов из 20 природных L-аминокислот, олигонуклеотидов, олигосахаридов, пептоидов, олигокарбаматов, олигомочевин и др.

Другое очень важное направление применения метода ОГОС – получение библиотек небольших молекул. Эти методом созданы библиотеки бензодиазепинов, гидантоинов, кубанов, лактамов, тиазолидинов, тетрагидрофуранов, бензпиранов, изоксазолов, триазолов, циклопентанов, циклогексанов, пиперазинов, дикетопиперазинов, пиридинов, хинолинов, бенимидазолов, хиназолинов, триазинов и др.

Смесь реагентов

Второй синтетический подход, названный методом “смесь реагентов”, предполагает использование избытков реагентов в отношении каждой реакционного цента на твердофазном субстрате. Применение таких смесей реагентов требует полного знания механизма и кинетики процессов, используемых в выполняемых реакциях. Большой избыток поступающих реагентов используется для того, чтобы наблюдалась реакция кинетики псевдопервого порядка. Однако этот подход имеет существенные ограничения. Очень важно, чтобы относительные скорости реакций вводящихся реактивов были приблизительно равными, т.е эти реагенты должны иметь примерно равную нуклеофильность и отсутствие стерических помех. Такие требования довольно трудно выполнять. Тем не менее было обнаружено, что эта концепция хорошо применима к синтезу гетероциклических библиотек типа циклической мочевины и тиомочевины.

Фотолитография

Фотолитография это техника для миниатюризации комбинаторного синтеза. В синтезе пептидов поверхность твердой подложки состоит из аминогрупп, защищенных фотолабильной нитровератрилоксикарбонильной защитной группой (NVOC). Используя маску защищая часть поверхности от облучения светом, удается снять защиту в экспонированной области.

После этого плата обрабатывается аминокислотой и в результате реакция протекает только в той области на плате, где предварительно была снята защита. Плата затем промывается для удаления избытка аминокислоты. Затем процесс может повторен в другой области платы, используя другую маску и таким образом различные пептидные цепи могут быть построены на различных частях платы, последовательность которых известна по записям на используемых масках.

Затем проводится инкубация платы с белком рецептора, для определения активного соединения, которое закреплено в соответствующем положении платы. Удобный метод для осуществления этого процесса это использование платы с флуресцентно-меченым рецептором. В этом случае только в присутствия активного соединения будет наблюдаться флуоресценция. Интенсивность флуоресценции может быть измерена методом флуоресцентной микроскопии и, таким образом, можно определить сродство синтезированного соединения к рецептору. Альтернативным способом может быть использование радионуклидов или хемолюминисценции.

Возможности этого метода очень высоки. При 20-микронном разрешении может быть приготовлена плата, на которой находится 250 000 различных соединений на квадратном сантиметре.

В случае пептидного синтеза общие операции, такие как снятие защиты и промывание, производятся путем погружения платы в большие бани, но связывание производится в ячейках, таким образом, чтобы каждая ячейка содержала уникальную аминокислоту.

Добавление реагента и удаление его избытка, а также нагревание и охлаждение реакционных смесей, может осуществляться автоматически. Такие синтезаторы подходят как для множественного параллельного синтеза индивидуальных соединений, так и для параллельного синтеза смесей, содержащих различные, но структурно подобные соединения.

Микроманипуляция

Каждый гранула в смеси содержит только один тип продукта. Следовательно, индивидуальная гранула может быть отделена, продукт очищен и затем протестирован. Эту процедуру можно осуществить методом калориметрического анализа, которым продукты тестируются на активность. Активные гранулы отличаются по цветным реакциям и могут быть выбраны путем микроманипуляции (ручным способом).

Обратная развертка

Микроманипуляция имеет серьезные трудности и возможности ошибок, в том случае когда имеет дело с большими количествами гранул. Для уменьшения объема работ в этом случае можно применить метод, известный как обратная развертка. Его можно проиллюстрировать на примере библиотеки трипептидов, которая описана ранее. В этом примере было синтезировано три смеси. Было предположено, что одна из них имеет активный компонент. Как найти, какой из девяти возможных трипептидов обладает активностью?

Мы можем синтезировать отдельно все девять пептидов и проверить на активность каждый из них. Однако, можно сократить объем работы, если сохранить образцы димерных смесей, полученных в процессе комбинаторного синтеза.

Предположим, что третья смесь трипептидов, описанных ранее, показывает активность. Это значит, что активный трипептид имеет валин на конце цепи. На следующей стадии возьмем три дипептидных смеси, которые мы сохранили и проведем связывание каждой из их с валином. В этом случае мы получим девять трипептидов разделенных на три отдельных смеси.


Поделиться:



Последнее изменение этой страницы: 2019-05-18; Просмотров: 393; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.066 с.)
Главная | Случайная страница | Обратная связь