Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Матричный метод решения систем линейных уравнений
Если матрица А системы линейных уравнений невырожденная, т.е. det A ≠ 0, то матрица А имеет обратную, и решение системы совпадает с вектором C = A 1B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X=C, C=A 1B называют матричным способом решения системы, или решением по методу обратной матрицы. Пример 2.15. Решить матричным способом систему уравнений x1 - x2 + x3 = 6, 2x1 + x2 + x3 = 3, x1 + x2 +2x3 = 5. Решение. Обозначим
Тогда данная система уравнений запишется матричным уравнением AX=B. Поскольку , то матрица A невырожденная и поэтому имеет обратную: . Для получения решения X мы должны умножить вектор-столбец B слева на матрицу A: X = A-1B. В данном случае
и, следовательно, . Выполняя действия над матрицами, получим: x1 = 1/5(1× 6+3× 3-2× 5) = 1/5 (6+9-10) = 1, x2 = 1/5 (-3× 6 +1× 3 - 1× 5) = 1/5 (- 18 + 3 + 5) = -2, x3 = 1/5 (1× 6 - 2× 3 + 3× 5) = 1/5 (6 -6 + 15) = 3. Ответ: (1, -2, 3) Метод Гаусса (последовательного исключения неизвестных) 1) Иметь единственное решение. Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Рассмотрим простейшую систему уравнений и решим ее методом Гаусса. На первом этапе нужно записать расширенную матрицу системы: Справка: Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей. После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями. Существуют следующие элементарные преобразования: 1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки: 2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: . 3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. 4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы. 5) К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Умножаем первую строку на -2: , и ко второй строке прибавляем первую строку, умноженную на –2: . Теперь первую строку можно разделить «обратно» на –2: . Строка, которую ПРИБАВЛЯЛИ – не изменилась. Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ. На практике так подробно, конечно, не расписывают, а пишут короче: «Переписываю матрицу и переписываю первую строку: » «Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: » «Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: » «И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »
Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду: (1) Ко второй строке прибавили первую строку, умноженную на –2. Кстати, почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке. (2) Делим вторую строку на 3. Цель элементарных преобразований – привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид. В результате элементарных преобразований получена эквивалентная исходной система уравнений: Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса. В нижнем уравнении у нас уже готовый результат: . Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»: Ответ: Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными. Пример Решить методом Гаусса систему уравнений: Запишем расширенную матрицу системы: Результат, к которому мы придём в ходе решения: В третьем уравнении у нас уже готовый результат: Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом: И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым: Ответ:
ТЕМА: ЭЛЕМЕНТЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ ИМАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Определение. Вероятностью события А называется отношение числа исходов m, благоприятствующих наступлению данного события А, к числу всех исходов (несовместимых, единственно возможных и равновозможных), т.е. Это равенство называют обычно классическим определением вероятности. Если в задаче говорится, что выбор производится наугад, наудачу, случайным образом, то это означает, что его элементарные исходы равновозможны. ПРИМЕР. Из цифр от 1 до 9 включительно наугад выбирается одна. Найти вероятность того, что выбранное число будет простым. Решение: 1. Опыт состоит в выборе одной цифры. 2. Пространство элементарных исходов: 3. Исходы опыта равновозможны, т.к. выбор производится наугад. 4. Количество всех исходов n = 9. 5. Событие А – «выбранное число простое». 6. Число исходов, благоприятствующих наступлению события А: m = 4. 7. Найдем вероятность события Ответ: вероятность того, выбранное число будет простым равна 4/9 (0, 444).
|
Последнее изменение этой страницы: 2019-05-18; Просмотров: 223; Нарушение авторского права страницы