Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема: Переключательная схема.
Цели: 1. Познакомиться со схематическими обозначениями логических элементов, научиться строить по формулам и читать электрические схемы Теоретическая часть. В компьютерах и других автоматических устройствах широко применяются электрические схемы, содержащие сотни и тысячи переключательных элементов: реле, выключателей и т.п. Разработка таких схем весьма трудоёмкое дело. Оказалось, что здесь с успехом может быть использован аппарат алгебры логики. Переключательная схема — это схематическое изображение некоторого устройства, состоящего из переключателей и соединяющих их проводников, а также из входов и выходов, на которые подаётся и с которых снимается электрический сигнал. Каждый переключатель имеет только два состояния: замкнутое и разомкнутое. Переключателю Х поставим в соответствие логическую переменную х, которая принимает значение 1 в том и только в том случае, когда переключатель Х замкнут и схема проводит ток; если же переключатель разомкнут, то х равен нулю. Будем считать, что два переключателя Х и связаны таким образом, что когда Х замкнут, то разомкнут, и наоборот. Следовательно, если переключателю Х поставлена в соответствие логическая переменная х, то переключателю должна соответствовать переменная . Всей переключательной схеме также можно поставить в соответствие логическую переменную, равную единице, если схема проводит ток, и равную нулю — если не проводит. Эта переменная является функцией от переменных, соответствующих всем переключателям схемы, и называется функцией проводимости. Найдем функции проводимости F некоторых переключательных схем: a) Схема не содержит переключателей и проводит ток всегда, следовательно F=1; б) Схема содержит один постоянно разомкнутый контакт, следовательно F=0; в) Схема проводит ток, когда переключатель х замкнут, и не проводит, когда х разомкнут, следовательно, F(x) = x; г) Схема проводит ток, когда переключатель х разомкнут, и не проводит, когда х замкнут, следовательно, F(x) = ; д) Схема проводит ток, когда оба переключателя замкнуты, следовательно, F(x) = x. y; е) Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно, F(x)=x v y; ж) Схема состоит из двух параллельных ветвей и описывается функцией . Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей. Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные Ю.И. Журавлев, С.В. Яблонский и др. При рассмотрении переключательных схем возникают две основные задачи: синтез и анализ схемы. СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам:
АНАЛИЗ СХЕМЫ сводится к
Практическая часть. Пример 1. Найдите функции проводимости следующих переключательных схем: а) б) в) г) Ответ. Пример 2. Проверьте равносильность следующих переключательных схем:
Ответ: Равносильны: б), в), д); а) ; ; Пример 3. Постройте переключательные схемы с заданными функциями проводимости: Пример 4. Упростите функции проводимости и постройте переключательные схемы, соответствующие упрощенным функциям: а) Пример 5. Упростите следующие переключательные схемы:
Ответ: Функции проводимости упрощенных схем: УРОК №17-18 |
Последнее изменение этой страницы: 2019-05-18; Просмотров: 423; Нарушение авторского права страницы