Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Момент импульса и его сохранение. Гироскопические явления.
Моментом импульса (моментом количества движения) материальной точки относительно неподвижной точки О называется вектор L, равный векторному произведению радиус-вектора r, проведенного из точки О в место нахождения материальной точки, на вектор p ее импульса L=r*P, где r - радиус-вектор частицы относительно выбранного начала отсчета, p – импульс частицы
Момент импульса системы относительно неподвижной точки: Если тело вращается вокруг одной из главных осей инерции, то направление вектора момента импульса тела совпадает с направлением вектора его угловой скорости, а значение момента импульса может быть выражено через момент инерции Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем. Закон сохранения момента импульса есть проявление изотропности пространства. гироскопы — массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси сим метрии, являющейся свободной осью. Если момент внешних сил, приложенных к вращающемуся гироскопу относительно его центра масс, отличен от нуля, то наблюдается явление, получившее название гироскопического эффекта. Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось гироскопа поворачивается вокруг прямой О3О3, а не вокруг прямой О2О2, как это казалось бы естественным на первый взгляд (O1O1 и О2О2 лежат в плоскости чертежа, а О3О3 и силы F перпендикулярны ей). Кинетическая энергия вращающегося твердого тела. Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек па которые это тело можно разбить: Если тело вращается вокруг неподвижной оси с угловой скоростью , то линейная скорость i-ой точки равна , где , - расстояние от этой точки до оси вращения. Следовательно. где - момент инерции тела относительно оси вращения. В общем случае движение твердого тела можно представить в виде суммы двух движений - поступательного со скоростью, равной скорости центра инерции тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр инерции. При этом выражение для кинетической энергии тела преобразуется к виду где - момент инерции тела относительно мгновенной оси вращения, проходящей через центр инерции. Пружинный маятник. Гармонические колебания. Характеристики гармонических колебаний: смещение, амплитуда, фаза, циклическая частота, период, скорость, ускорение. Дифференциальное уравнение гармонических колебаний. Колебания — повторяющийся в той или иной степени во времени процесс изменения состояний системы. Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку. Классификации колебаний Выделение разных видов колебаний зависит от свойства, которое хотят подчеркнуть. Для подчёркивания разной физической природы колеблющихся систем выделяют, например, колебания: механические (звук, вибрация); электромагнитные (свет, радиоволны, тепловые); комбинации вышеперечисленных; По характеру взаимодействия с окружающей средой: вынужденные – колебания, протекающие в системе под влиянием внешнего периодического воздействия; собственные или свободные – колебания при отсутствии внешних сил, когда система, после первоначального воздействия внешней силы, предоставляется самой себе (в реальных условиях свободные колебания всегда затухающие); автоколебания – колебания, при которых система имеет запас потенциальной энергии и она расходуется на совершение колебаний (пример такой системы - механические часы). |
Последнее изменение этой страницы: 2019-05-18; Просмотров: 307; Нарушение авторского права страницы