Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Скорость и ускорение при гармонических колебаниях.



Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями.

Согласно определению скорости, скорость – это производная от координаты по времени.

Согласно определению ускорения, ускорение – это производная от скорости по времени.

Гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса).

 Гармонические колебания описываются уравнением типа: , где

 s – смещение колеблющейся точки от положения равновесия.

 А - максимальное значение колеблющейся величины, называемое амплитудой колебания

ω 0 круговая (циклическая) частота,

φ — начальная фаза колебания в момент времени t=0,

0t+φ ) - фаза колебания в момент времени t

Фаза колебания есть значение колеблющейся величины в данный момент времени. Так как косинус имеет значение в пределах от +1 до –1, то s может принимать значения от +А до –А.
Определенные состояния системы, которая совершает гармонические колебания, повторяются через промежуток времени Т, имеющий название период колебания, за который фаза колебания получает приращение (изменение) 2π, т. е.

откуда
(2)
Величина, обратная периоду колебаний,
(3)
т. е. число полных колебаний, которые совершаются в единицу времени, называется частотой колебаний. Сопоставляя (2) и (3), найдем

Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, во время которого за 1 с совершается один цикл процесса.
Найдем первую и вторую производные по времени от величины s, совершающей гармонические колебания:
(4)
(5)
т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин в формулах (4) и (5) соответственно равны Аω 0 и Аω 02. Фаза величины в формуле (4) отличается от фазы величины в формуле (1) на π /2, а фаза величины в выражении (5) отличается от фазы величины (1) на π. Значит, в моменты времени, когда s=0, ds/dt имеет наибольшие значения; когда же s становится равным максимальному отрицательному значению, то d2s/dt2 равен наибольшему положительному значению.

Дифференциальное уравнение гармонических колебаний материальной точки.

, или, где m – масса точки, k – коэффициент квазиупругой силы (k=mw2).

 

Пружинный маятник

Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), либо горизонтально (горизонтальный пружинный маятник).

где ах – ускорение, m - масса, х - смещение пружины, k – жесткость пружины.

Это уравнение называют уравнением свободных колебаний пружинного маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

1)силы трения, действующие на тело, пренебрежимо малы и поэтому их можно не учитывать;

2) деформации пружины в процессе колебаний тела невелики, так что можно их считать упругими и в соответствии с этим пользоваться законом Гука.

Закон Гука, устанавливает линейную зависимость между упругой деформацией твердого тела и приложенным механическим напряжением. Напр., если стержень длиной l и поперечным сечением S растянут продольной силой F, то его удлинение = Fl/ ES, где E — модуль упругости (модуль Юнга).

Свободные колебания пружинного маятника имеют следующие причины.

1. Действие на тело силы упругости, пропорциональной смещению тела х от положения равновесия и направленной всегда к этому положению.

2. Инертность колеблющегося тела, благодаря которой оно не останавливается в положении равновесия (когда сила упругости обращается в нуль), а продолжает двигаться в прежнем направлении.

Выражение для циклической частоты имеет вид:

где w - циклическая частота, k - жесткость пружины,  m - масса.

Эта формула показывает, что частота свободных колебаний не зависит от начальных условий и полностью определяется собственными характеристиками самой колебательной системы — в данном случае жесткостью k и массой m.

Это выражение определяет период свободных колебаний пружинного маятника.

Математический маятник.

Математическим маятником называется тяжёлая материальная точка, которая двигается или по вертикальной окружности (плоский математический маятник), или по сфере (сферический маятник). В первом приближении математическим маятником можно считать груз малых размеров, подвешенный на нерастяжимой гибкой нити.


Рассмотрим движение плоского математического маятника по окружности радиуса l с центром в точке О (рис. 1). Будем определять положение точки М(маятника) углом отклонения j радиуса ОМ от вертикали. Направляя касательную Mt в сторону положительного отсчёта угла j, составим естественное уравнение движения. Это уравнение образуется из уравнения движения

mW=F+N, (1)
где F — действующая на точку активная сила, а N — реакция связи.

Уравнение (1) мы получили по второму закону Ньютона, который является основным законом динамики и гласит, что производная по времени от количества движения материальной точки равна действующей на неё силе, т. е.

.


Поделиться:



Последнее изменение этой страницы: 2019-05-18; Просмотров: 397; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь