Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Кафедра безопасности жизнедеятельности. УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)Стр 1 из 6Следующая ⇒
УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)
Кафедра безопасности жизнедеятельности О.В. Чепульская, Г.И. Шатунова АТТЕСТАЦИЯ РАБОЧИХ МЕСТ ПРОИЗВОДСТВЕННЫЙ ШУМ
Методические указания к учебно-исследовательской работе № 4 для студентов всех специальностей университета
МОСКВА – 2006 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)
Кафедра «Безопасность жизнедеятельности» Ольга Васильевна Чепульская, Галина Ивановна Шатунова АТТЕСТАЦИЯ РАБОЧИХ МЕСТ ПРОИЗВОДСТВЕННЫЙ ШУМ
Рекомендовано редакционно-издательским советом университетом в качестве методических указаний для студентов всех специальностей университета ПО ДИСЦИПЛИНЕ «безопасность жизнедеятельности»
Москва – 2006 УДК Ч-43
Чепульская О.В, Шатунова Г.И. Исследование производственного шума./ Методические указания. – М. МИИТ, 2006. – 36 с., ил.
Рассмотрены характеристики шума, его классификация и основы нормирования. Приведены рекомендации по применению приборов для оценки постоянного и непостоянного шума. Разработаны для студентов всех специальностей университета, проходящих лабораторный практикум по дисциплине «»Безопасность жизнедеятельности».
© Московский государственный университет путей сообщения (МИИТ), 2006
ПРИНЯТЫЕ ОБОЗНАЧЕНИЯ
ВВЕДЕНИЕ Шум является одним из наиболее распространенных вредных производственных факторов. Помимо неблагоприятного психофизиологического воздействия, ведущего к различным расстройствам в организме человека шум ухудшает восприятие речи и звуковых сигналов. Все это ведет к снижению качества труда и безопасности производственных процессов. Работники всех профессий железнодорожного транспорта часто подвержены воздействию интенсивного шума. Поэтому борьба с неблагоприятным воздействием шума является одной из составных задач в обеспечении безопасности жизнедеятельности. В последнее десятилетие приоритетное значение среди работ по охране труда приобрела аттестация рабочих мест по условиям труда. Предприятия ОАО «Российские железные дороги» аттестацию рабочих мест по условиям труда проводят в соответствии с указанием МПС РФ от 18 ноября 1998 г. № Л-1318 у. Для сертификации этой работы издано соответствующее указание № Н-829у от 06 августа 2003 г. «О создании подсистемы добровольной сертификации работ по охране труда в организациях железнодорожного транспорта». Для получения данных о состоянии условий труда не реже одного раза в пять лет проводят аттестацию рабочих мест. Результаты аттестации являются основой для разработки комплекса мероприятий по обеспечению безопасных условий труда. Оценка производственного шума ведется в соответствии с санитарными нормами СН 2.2.4/2.1.8.562-96 [1]. При этом устанавливают продолжительность действия шума, постоянство его параметров во времени, определяют частотные спектры или эквивалентные уровни звука и их соответствие допустимым значениям. Цель работы – изучить характеристики, основы измерений и методику санитарно-гигиенической оценки производственного шума при проведении аттестации рабочих мест.
ОСНОВНЫЕ ПОЛОЖЕНИЯ Характеристика шума Под шумом понимают звук или комплекс звуков, раздражающе действующих на человека и/или мешающих восприятию полезных сигналов. Физиологически шум определяется реакцией организма на звуки. Установлено, что диапазон частот колебаний звуковых волн, воспринимаемых ухом человека, находится в пределах 16–20 000 Гц. Звук с частотой ниже 16 Гц называется инфразвуком, а с частотой выше 20 000 Гц – ультразвуком. С физической точки зрения разницы между шумом и звуком нет. Поэтому встречающиеся на практике шумы можно рассматривать как сумму простых гармонических тонов. Распространяясь в атмосфере, звуковые волны возбуждают колебания избыточного давления в точке наблюдения по сравнению с атмосферным. Эти колебания, действуя на барабанную перепонку уха, воспринимаются в виде слышимого звука. Описанный процесс характеризуется среднеквадратическим значением звукового давления за время Т (рис. 1): , (1) где p(t) – звуковое давление в момент времени t. Основными параметрами, характеризующими шум в какой-либо точке пространства, являются уровень звукового давления LР (дБ) и частота f (Гц). Звуковое давление, воспринимаемое ухом человека как звук, лежит в широких пределах: отношение его величины на болевом пороге к давлению на пороге слышимости составляет 106 раз. Такими величинами неудобно пользоваться на практике. В этом заключается одна из причин, почему для измерения звукового давления применяют единицу децибел (дБ) – десятую часть бела. Рис. 1 Определение среднеквадратического давления
Единица бел названа в честь американского ученого А. G. Bell . Величина, выраженная в децибелах, называется уровнем звукового давления и определяется выражением: (2) где p0 – величина звукового давления на пороге слышимости частоты 1000 Гц, p0=2∙10-5 Па. Единицей частоты колебаний f является герц (Гц), т. е. одно полное колебание в секунду. Принято шум характеризовать зависимостью уровня звукового давления в децибелах от частоты. Такое представление называется частотным спектром или просто спектром. Характер спектра производственного шума определяется максимальным уровнем звукового давления в диапазоне частот: – до 300 Гц – низкочастотный; – более 300 Гц до 800 Гц – среднечастотный; – свыше 800 Гц – высокочастотный. Говоря о спектре, необходимо указывать ширину частотных полос, в которых производилось его определение. При оценке безопасности труда применяется октава. Октава – это такая полоса, верхняя fВ и нижняя fН граничные частоты которой связаны отношением fВ/fН=2. Полоса пропускания характеризуется среднегеометрической частотой fСГ. С учетом приведенного отношения среднегеометрическая частота октавы определяется в виде: (3) Значения среднегеометрических частот стандартизовано, поэтому из приведенной последовательности можно определить все частотные характеристики октавной полосы. Рис. 2 Спектральная характеристика шума
По числу октавных полос в спектре шумы разделяют на широкополосные, с непрерывным спектром более одной октавной полосы (такой спектр имеет шум подвижного состава при движении по бесстыковому пути или водопада) и тональные, когда в шуме слышатся дискретные тона (свист, вой сирены и т. п.). Сопоставление спектров показано на рис. 2. По временным характеристикам шумы могут быть постоянные, УЗД которых за рабочий день (рабочую смену) изменяется не более, чем на 5 дБ (дБА), и непостоянные – колеблющиеся во времени, прерывистые и импульсные, разность максимального и минимального уровней которых превышает 5 дБ (дБА). В отличие от колеблющегося прерывистый шум действует лишь часть рабочего времени, например, в ритме технологического процесса. Импульсный шум на слух воспринимается как отдельные кратковременные звуки с резким нарастанием и спадом уровня звукового давления, например, работа отбойного молотка, удары.
НОРМ НОРМИРОВАНИЕ ШУМА
2 . |
Производственный шум оказывает негативное влияние на организм человека, вызывая перегрузку нервной системы. Повышенные уровни звукового давления приводят к заболеваниям сердечно-сосудистой и эндокринной систем, а так же желудочно-кишечного тракта (гастрит, язвенная болезнь).
Действие повышенных уровней шума на протяжении 10-15 лет может привести к развитию профессионального заболевания – тугоухости. Кроме того, превышение норм шума на рабочем месте оператора приводит к снижению внимания и повышенной утомляемости, что сказывается на надежности выполняемых им операций – растет число ошибок. Естественной защитой от вредного действия шума организм не обладает!
Вредность шума как фактора производственной среды диктует необходимость ограничивать его уровни на рабочих местах. Ограничение (нормирование) в зависимости от характера шума осуществляется методом предельных спектров и/или методом уровня звука.
Рис. 3 Вид некоторых предельных спектров
Метод предельных спектров. Предельным спектром (ПС) называется совокупность безопасных значений УЗД на среднегеометрических частотах 31,5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц. Графически предельный спектр представляется плавной кривой, которая характеризует «равновредность» указанных совокупностей (рис. 3). Применяется этот метод для нормирования постоянного шума.
Каждому предельному спектру присваивается номер, численно равный уровню звукового давления в октавной полосе этого спектра с частотой fсг =1000 Гц. Например, ПС-55 означает, что данному спектру соответствует уровень звукового давления (УЗД) равный 55 дБ на среднегеометрической частоте 1000 Гц. Описание рабочих мест и соответствующие им предельные спектры приведены в приложении 1.
Таблица 1
РЕЗУЛЬТАТОВ
Измеряемые параметры
Методы измерения шума в производственных помещениях и на территориях предприятий во всех отраслях народного хозяйства установлены стандартом ГОСТ 12.1.050–86. ССБТ. Методы измерения шума на рабочих местах. Стандартом установлены измеряемые и рассчитываемые величины в зависимости от временных характеристик шума (рис. 4).
Постоянный шум. При постоянном шуме измеряются октавные уровни звукового давления L (дБ) и уровень звука LА (дБА) на характеристике «медленно» шумомера.
Рис. 4 Классификация производственного шума
Непостоянный шум. Измеряемые параметры определяются типом непостоянного шума. Для колеблющегося во времени и прерывистого шума измеряют эквивалентный Lэкв и максимальный уровень звука дБА на характеристике «медленно» шумомера.
При импульсном шуме определяют эквивалентный уровень LЭКВ на характеристике «медленно» и максимальный уровень звука дБА I на характеристике «импульс» шумомера.
Измерение уровня звука в дБА проводится с использованием корректирующей схемы «A» (рис. 5). Частотная характеристика ее соответствует чувствительности уха человека, которая зависит от частоты звука.
Рис. 5 Корректирующие характеристики шумомера
Кривая представляет собой равное восприятие звуков человеком в осях «УЗД-частота». Ее изменение показывает, что относительная чувствительность уха растет с повышением частоты. Следовательно, при равных УЗД тот из рассматриваемых источников оказывает большее воздействие, частота которого выше.
Методика измерения шума
Измерения должны проводиться на установленных постоянных рабочих местах или в точке рабочей зоны, наиболее частого пребывания работающего (для непостоянного рабочего места). Микрофон шумомера располагают на высоте 1,5 м над уровнем пола/рабочей площадки при выполнении работы стоя или на высоте уха, если работа выполняется сидя. Мембрана микрофона направляется в сторону источника с наибольшим УЗД и располагается на расстоянии более 0,5 м от оператора, проводящего измерения.
Результаты измерения шума на рабочем месте должны быть характерны для шумового воздействия за рабочую смену (рабочий день). В связи с этим устанавливается необходимая продолжительность измерений. Так, для оценки постоянного шума достаточно периода получения одного октавного спектра и отсчета уровня звука, дБА.
Колеблющийся во времени шум должен измеряться половину рабочей смены (рабочего дня) или полный технологический цикл. Допускается общая продолжительность его измерения 30 мин, состоящая из трех циклов каждый по 10 мин. На протяжении любого из перечисленных периодов времени через минимально возможные и постоянные интервалы (например, Δt =3 с) регистрируют уровни звука в дБА. Полученный массив данных используют для расчета эквивалентного уровня звука (см. п. 3.3.2).
Для импульсного шума период измерений установлен 30 мин, а для прерывистого – полный цикл характерного изменения УЗД. Например, для компрессора пневмопочты, работающего периодически, циклом следует считать период от начала рабочего процесса, включая простой, до следующего пуска компрессора.
Проведение измерений должно осуществляться при работе не менее 2/3 установленного в исследуемом помещении единиц технологического оборудования в характерном режиме работы. При этом должно работать и вспомогательное оборудование, являющееся источником шума (установки вентиляции и кондиционирования воздуха, душирующие устройства, воздушные завесы и пр.).
Обработка результатов
3.3.1. Определение общего уровня работающих источников
Как правило, шум на рабочем месте определяется работой нескольких источников. При этом их УЗД (или уровни звука) могут различаться по величине или быть равными. Зная уровень звукового давления Li, создаваемый работой отдельно каждым источником, можно определить общий уровень при одновременной работе всех, не проводя измерений. Для этого применим общее выражение энергетического суммирования
(5)
При равенстве УЗД нескольких источников, создаваемый их совместной работой общий уровень определяется в виде:
(6)
где п – число источников шума с равной величиной УЗД, L – уровень звукового давления одного источника, дБ или уровень звука дБА.
Расчеты LСУМ по формуле (5) можно заменить последовательным нахождением добавки к наибольшему УЗД. Для этого, предварительно, значения уровней располагают в порядке убывания.
По разности уровней L1-L2 (L1>L2) первых двух источников находят поправку DL, которую арифметически складывают с наибольшим из уровней – Li. Эту поправку можно определить по табл. 3 или графически (рис. 6).
Таблица 3
Нахождение поправки DL
Разность двух уровней, дБ, дБА | Добавка к большему УЗД | Разность двух уровней, дБ, дБА | Добавка к большему УЗД |
0 | 3,0 | 6 | 1,0 |
1 | 2,5 | 7 | 0,8 |
2 | 2,0 | 8 | 0,6 |
3 | 1,8 | 10 | 0,4 |
4 | 1,5 | 15 | 0,2 |
5 | 1,2 | 20 | 0 |
Далее, за наибольший УЗД принимают полученную сумму и описанные действия повторяют для всех п источников. При этом, если L1-L2>10 дБ, то добавкой от уровня L2 можно пренебречь в силу ее малости. Если же L1 = L2, то для расчета применить выражение (6). Аналогичным образом обрабатываются уровни звука в дБА.
Рис. 6 Определение добавки при суммировании уровней
3.3.2 Расчет эквивалентного уровня звука
Расчет эквивалентного уровня звука Lэкв непостоянного шума основан на определении продолжительности действия дискретных уровней La в общем времени измерения Т. Для этого полученные отсчеты в дБА (п. 3.2) классифицируют по группам с интервалом 5 дБА со средним уровнем интервала Li. Так, в группу с Li=65 дБА входят все уровни от 63 до 67 дБА, а в группу с Li =70 дБА – уровни звука от 68 до 72 дБА и т. д.
Зная Δt – интервал считывания значении La определяют продолжительность действия ti=Δt∙ k ( k – число дискретных значений уровня звука в интервале Li) уровней каждой группы и, наконец, эквивалентный уровень звука для всех п групп:
(7)
3.3.3 Усреднение результатов измерений
Для повышения достоверности необходимо трижды измерить уровень с последующим усреднением результата. Среднее значение трех измеренных величин вычисляется по формуле:
, (8)
где Li – измеренные уровни звукового давления, дБ или уровни звука, дБА; i=1, 2, 3.
Если разность отдельных измерений не превышает 5 дБ, то результат можно получить как среднеарифметическое значение усредняемых уровней.
4. |
ХАРАКТЕРИСТИКА ЛАБОРАТОРНОЙ
УСТАНОВКИ
Шумомер
Для измерения уровня звукового давления или уровня звука исследуемого шума применяется точный импульсный шумомер PSI-202. Он представляет собой переносной прибор, питание которого осуществляется от источника постоянного тока напряжением 6,5-9 В. Шумомер снабжен конденсаторным микрофоном и способен измерять уровни звукового давления от 30 до 150 дБ.
Шумомер имеет характеристики А, В, С и LIN, предназначенные для предварительной оценки частотного состава исследуемого шума. Это позволяет оценивать шум одним числом с наименованием фильтра. Наиболее употребляемой из перечисленных является характеристика «A», при включении которой значительно снижается чувствительность шумомера в области низких частот, что соответствует частотной чувствительности уха человека. Оценка шума с применением этой характеристики предусмотрена стандартом с представлением результата, например, в виде 60 дБА. Это означает, что шум измерялся с применением фильтра А, а результат измерения составил 60 дБ.
Принцип работы шумомера состоит в следующем: звуковое давление действует на мембрану микрофона, в результате на его выходе создается переменное электрическое напряжение, пропорциональное звуковому давлению.
Далее сигнал усиливается, проходит частотную фильтрацию и вновь усиливается. До формирования результата сигнал интегрируется, обрабатывается детектором и затем отображается измерительным прибором. Органы управления шумомером приведены на рис. 7. Центральный переключатель 4 поворотом по часовой стрелке от исходного положения включает питание прибора, позволяет провести его калибровку и выбрать реализуемую функцию в одном из трех секторов в соответствии с выбранной постоянной интегрирования.
Переключение диапазона измерений осуществляется поворотными переключателями 1 и 2 с отображением начала отсчета в окне 8. Последовательность переключения аттенюаторов, управляемых ручками 1 и 2, должна строго соблюдаться для предупреждения повреждения шумомера и получения ложных показаний.
Рис. 7 Расположение органов управления шумомера
и октавного фильтра
Переключатель 3 служит для проверки состояния блока питания (левое положение) и калибровки шумомера (правое положение) по показанию стрелочного прибора 5. При проведении измерений данный переключатель должен занимать среднее положение.
Применение остальных органов управления задачами лабораторной работы не предусмотрено.
Анализатор частот
Анализатор (фильтр) предназначен для исследования частотного состава шума. Он представляет собой полосовой октавный фильтр OF-101, который обеспечивает частотный анализ сигнала на среднегеометрических частотах 31,5 Гц – 16 кГц. Схема фильтра выполнена в виде пассивного четырехполюсника с регулируемой частотной характеристикой. Полный рабочий диапазон частот от 22,4 Гц до 22,4 кГц разделен на 10 полос шириной в октаву (см. п. 1).
Рис. 8 Общий вид генератора шума:
1 – регулятор низких частот; 2 – регулятор уровня;
3 – регулятор верхних частот; 4, 5, 6 – сигнальные лампы;
7 –тумблер включения установки; 8, 9 –тумблеры включения соответственно второго и первого источников шума
Выбор среднегеометрической частоты фильтра осуществляется поворотным переключателем 6 (рис. 7), а согласование внешней активной нагрузки – переключателем 7, который в режиме лабораторного стенда должен быть установлен в положение 600 Ом.
Генератор шума
Генератор шума (рис. 8) собран на объемных элементах и представляет собой регулируемый по частоте и мощности транзисторный широкополосный усилитель шумов электронной схемы. Он предназначен для питания двух источников, расположенных в камере и моделирующих шум производственного оборудования. Включение генератора в сеть производится тумблером 7, а источников шума 1 и 2 – тумблерами 8 и 9.
Перечисленные органы управления расположены на лицевой панели прибора. Поворотными ручками 1, 2 и 3 можно менять частотный состав и уровень в шумовой камере по усмотрению преподавателя.
5. |
ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ
Лабораторная работа состоит из двух вариантов с временнόй характеристикой шума, определяемых преподавателем:
– вариант «А» – непостоянный шум (оценка по эквивалентному уровню звука);
– вариант «Б» – постоянный шум (оценка по предельному спектру).
Рис. 9 Алгоритм проведения измерений
5.1. Подготовка установки к измерениям
Подготовка приборов к измерениям заключается в установке органов управления в исходное положение, проверке блока питания и не зависит от варианта задания.
1) Шумомер (рис. 7):
– переключатели 1 и 2 поочередно вращать влево до упора (в окне 8 виден индекс Ñ);
– переключатель 3 должен занимать среднее положение;
– поворотный переключатель 4 выбора режимов работы установить на «0».
2) Анализатор (рис. 7 – внизу):
– переключатель 6 выбора среднегеометрической частоты анализа установить на отметку 31,5 Гц;
– переключатель 7 перевести в крайнее левое положение.
3) Генератор шума (рис. 8):
– положения переключателей 1–3 задаются преподавателем.
Для проверки блока питания шумомера установить переключатель 3 на индекс -||-, а переключатель 4 – повернуть на один щелчок по ходу часовой стрелки. При нормальной величине питающего напряжения стрелка измерительного прибора 5 расположится в секторе с соответствующим обозначением. В противном случае обратиться к преподавателю. Вернуть переключатель 3 в среднее положение. Измерительная установка к работе готова.
Измерение уровня звука
Последовательность операций при измерениях определяется поставленной задачей. Предварительно, установите временнýю характеристику шума исследуемого источника. Для этого необходимо выполнить следующие операции (от исходного положения органов управления шумомера):
– включить питание генератора тумблером 7 и исследуемого источника шума (тумблером 8 или 9);
– установить переключатель 4 шумомера на индекс «A» в секторе с временной характеристикой LANGSAM ( S);
– сделать один щелчок по ходу часовой стрелки переключателем 1 шумомера и далее следовать указаниям операционной табл. 4.
Для получения результата суммировать число в окне 8 и показание стрелочного прибора шумомера. Описанную процедуру повторить трижды для усреднения результата в соответствии с п. 3.3.3 и занести результат усреднения в последний столбец табл. Б2 бланка задания (см. приложение 2). Отметьте максимальное и минимальное значения уровня звука по показаниям измерительного прибора 5.
Таблица 4
Операционная таблица
(переключать до положения стрелки между 0 и +10 дБ)
Положение стрелки измерительного прибора шумомера | Число в окне 8 шумомера (рис. 7) | ||
80 или больше | 70 или меньше | ||
Левее 0 дБ шкалы прибора | вращать переключатель 1 по часовой стрелке | вращать переключатель 2 по часовой стрелке | |
Правее +10 дБ шкалы прибора | вращать переключатель 1 против часовой стрелки | вращать переключатель 2 против часовой стрелки | |
Сделайте заключение о временной характеристике шума (п. 1) и в соответствии с блок-схемой на рис. 9 выберите алгоритм последующих действий.
В. Расчет суммарного уровня
По указанию преподавателя заполните левый столбец исходных уровней таблицы раздела «Расчет суммарного уровня…» бланка-задания (приложение 2), а в правом проставьте присвоенные обозначения по условию L1>L2. Пользуясь приведенным графиком, получите величину поправки D L и определите УЗД, создаваемый одновременной работой заданных источников. Занесите результат в строку ΣL.
АТТЕСТАЦИЯ РАБОЧЕГО МЕСТА
6. |
По результатам измерений шума заполняется табл. З.1 (приложение 3) санитарно-гигиенической оценки шума на рабочем месте – паспорт.
Так как шум в камере моделирует какую-то производственную обстановку, то студенту предлагается заполнить графу «Рабочее место, участок» самостоятельно. Сюда может быть включено описание любого производственного участка (место технологической практики, рабочее место локомотивной бригады или СДМ и т. п.).
Занесите уровень звука измеренного шума и допустимый по стандарту для принятого рабочего места в следующие два столбца колонки «Уровень в дБА».
В графе «Источники шума», основываясь на личном опыте и приобретенных знаниях по профессии, следует перечислить основное «шумящее» технологическое оборудование. Так, для рабочего места, расположенного в кабине управления (строительно-дорожные и подъемно-транспортные машины, локомотивы и пр.), это могут быть выпускной тракт двигателя внутреннего сгорания, излучение шума картером или блоком, рабочим органом или ограждениями кабины в результате резонансных колебаний ее конструкций и т. п.
На рабочих местах промышленных предприятий повышенный уровень шума может быть следствием применяемого технологического процесса (ковка, трамбовка или выбивка опок, сварочные работы, работа станочного парка, транспортирование заготовок или готовых изделий и др.), пнев-моинструмента, функционирования систем нормализации микроклимата: вентиляции, воздушного отопления и воздушной завесы и тому подобное оборудование.
Последние два столбца под заголовком «Число работающих» заполните по данным своей учебной группы.
В заключение работы проведите анализ результатов измерений и расчетов: определите соответствие октавного спектра принятому ПС или допустимому спектру, сопоставьте нормативный уровень звука с измеренным, отметьте источники шума.
Результат в произвольной форме занесите в раздел «Рекомендации по оздоровлению условий труда». Сюда же внесите свои предложения по нормализации акустической обстановки на рабочем месте, пользуясь данными табл. 2.
КОНТРОЛЬНЫЕ ВОПРОСЫ
Раздел 1.
1. В чем заключается вредное действие шума?
2. Дайте определение понятия «шум».
3. Приведите физические параметры, характеризующие шум.
4. В чем смысл аттестации условий труда?
5. Назовите диапазон частот, воспринимаемых ухом как звук.
6. Перечислите характеристики шума.
7. В чем различие постоянного и непостоянного шумов?
8. Как подразделяется непостоянный шум?
9. Что такое октава, какими параметрами она характеризуется?
10. Как определить по спектру частотный характер шума?
11. Что называется спектром шума?
Раздел 2.
1. Что такое предельный спектр (ПС) и его номер?
2. Чем определяется номер предельного спектра?
3. Что представляет собой частотная коррекция «А» шумомера и когда она применяется?
4. Как нормируется постоянный шум?
5. Как нормируется колеблющийся и прерывистый шум?
6. Как нормируется шум, если продолжительность его во времени меньше рабочего дня (смены)?
7. В чем отличие допустимого спектра от предельного?
8. Найдите поправку к предельному спектру при условии, что источник шума действует 48 мин.
Раздел 3.
1. Какие приборы применяются для измерения и частотного анализа шума?
2. Как получить результат измерения по показанию шумомера?
3. Покажите на примере, как усредняются результаты, полученные в децибелах.
4. Определите общий уровень звукового давления, создаваемый одновременной работой нескольких источников с различными уровнями звукового давления.
5. Как рассчитать общий уровень, создаваемый одновременной работой нескольких источников с одинаковыми уровнями?
Раздел 4.
1. Опишите измерительную установку лабораторного стенда.
2. Поясните назначение приборов лабораторного стенда.
3. В чем принцип работы шумомера?
4. Какие характеристики имеет детектор стрелочного прибора?
5. Какова полоса пропускания анализатора?
6. В каких октавных полосах проводится частотный анализ?
Раздел 5.
1. В чем заключается подготовка установки к измерениям?
2. Как снять показание шумомера?
3. Сколько отсчетов следует получить для повышения точности результата измерения шума?
4. Каков порядок действий при измерении постоянного шума?
5. От чего зависит выбор алгоритма измерения?
Раздел 6.
1. Перечислите предполагаемые источники шума.
2. Дайте оценку шума на рабочем месте по уровню звука (дБА).
3. Приведите примеры конструктивного решения мероприятий по снижению шума.
ПРИЛОЖЕНИЕ 1
Таблица П1
Рабочее
Место,
Участок
Уровень звука, дБА
Источники
Шума
Число работающих:
БИБЛИОГРАФИЯ
УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)
Кафедра безопасности жизнедеятельности
Последнее изменение этой страницы: 2019-03-21; Просмотров: 1098; Нарушение авторского права страницы