Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Понятие информации. Разновидности информации
В зависимости от области знаний информация получила множество определений: · обозначение содержания, получаемое от внешнего мира в процессе приспособления к нему (Норберт Винер); · отрицание энтропии (Леон Бриллюэн); · устранение неопределенности (Клод Шеннон); · передача разнообразия (Эшби); · мера сложности (Моль); · вероятность выбора (Яглом) и др. Различают два подхода к оценке информативности объектов и процессов. Для количественной оценки используют понятие синтаксической информации, а для качественной – семантической. Семантический подход к понятию информация дает качественную оценку объекта и основан на использовании понятий ценности, практической значимости, полезности информации. Информация абсолютна, а ценность ее – относительна. Формализовать семантический подход в общем случае пока не удалось. Количественно измерить информацию можно с помощью прибора, а для оценки качественной характеристики информации требуется тезаурус человека, определяемый его уровнем знаний (или искусственный интеллект). То есть, количественную оценку информации можно произвести уже на этапе ее получения, а качественную оценку – только на этапе ее обработки. При количественной оценке используют понятия связанной и свободной информации. Связанная информация – это информация, содержащаяся в самой структуре предмета, явления, процесса. Свободная информация - это продукт человеческой деятельности, содержащийся в документах, результатах измерений. Таким образом, количество связанной информации всегда больше свободной информации об объекте. В силу дискретности вещества и энергии непрерывность измеряемых физических величин является только некоторым приближением, абстракцией к рассматриваемым физическим процессам (в термодинамике, электричестве и др.). Так как материя и любое физическое явление дискретны, то рассматривать измеряемые параметры как постоянные физические величины справедливо лишь при выполнении условия: >> (1.1) где - значение измеряемой физической величины; - погрешность измерения. Информативность объекта или процесса связана с понятием дискретности используемых для его описания физических величин. Теория информации занимается проблемами получения (рецепции) и передачи информации, ее хранения и обработки. При этом ценность информации зависит от той цели, к которой стремится принимающий эту информацию объект (чаще всего предполагается, что это человек). С появлением синергетики и внедрения ее в информатику ситуация изменилась. Во-первых, стал исследоваться вопрос об эволюции информации. В связи с этим расширилось представление об объектах, способных генерировать, передавать и воспринимать информацию. Во-вторых, стали исследоваться физические механизмы, лежащие в основе рецепции, запоминания и переработки информации. Ранее считалось, что это прерогатива физиков и техников, обеспечивающих элементарную базу информации. Теперь ясно, что они имеют принципиальное значение. Например, вопрос о физических механизмах работы мозга – в частности, физической модели памяти - сейчас весьма актуален для конструирования ЭВМ нового поколения, устройств контроля и управления технологическими процессами и т.п. Проблема рецепции информации требует физического подхода. При этом важную роль играет анализ биологических рецепторных систем, т.к. они по чувствительности пока чаще всего превосходят искусственные устройства. Пространственно - волновая самоорганизация в сложных системах приводит к возникновению детерминированных и стохастических процессов. Причиной информативности могут являться, например, процессы, связанные с потерей устойчивости систем. Анализ причин неожиданных явлений в таких системах основан на анализе поведения динамических систем. При неустойчивых процессах очень малая причина может приводить к следствию, которое по масштабам несоизмеримо с причиной, т. е. в качестве причины выступает как - бы внутреннее свойство системы, ее неустойчивость. Таким образом, информативность реальных систем, связана с понятием нелинейности протекающих в них физических процессов, явлений. Оптимальный выбор соответствующих физических эффектов и рациональное их использование в первичных измерительных преобразователях физических величин позволяет создавать на их основе различные типы высокоинформативных измерительных устройств. |
Последнее изменение этой страницы: 2019-03-22; Просмотров: 316; Нарушение авторского права страницы