Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Устройства хранения информации



EEPROM — (англ. Electrically Erasable Programmable Read-Only Memory, электрически стираемое перепрограммируемое ПЗУ, ЭСППЗУ). Память такого типа может стираться и заполняться данными несколько десятков тысяч раз. Используется в твердотельных накопителях. Одной из разновидностей EEPROM является флеш-память (англ. Flash Memory).

 

Статическая оперативная память с произвольным доступом (SRAM — Static Random Access Memory) — полупроводниковая оперативная память, в которой каждый двоичный или троичный разряд хранится в схеме с положительной обратной связью, позволяющей поддерживать состояние сигнала без постоянной перезаписи, необходимой в динамической памяти (DRAM). Произвольный доступ (RAM — random access memory) — возможность выбирать для записи/чтения любой из битов (тритов) (чаще байтов (трайтов), зависит от особенностей конструкции), в отличие от памяти с последовательным доступом (SAM — sequental access memory).

Типичная ячейка статической двоичной памяти (двоичный триггер) на КМОП-технологии состоит из двух перекрёстно (кольцом) включенных инверторов и ключевых транзисторов для обеспечения доступа к ячейке. Часто для увеличения плотности упаковки элементов на кристалле в качестве нагрузки применяют поликремниевые резисторы. Недостатком такого решения является рост статического энергопотребления.

Преимущества

Быстрый доступ. SRAM — это действительно память произвольного доступа, доступ к любой ячейке памяти в любой момент занимает одно и то же время.

Простая схемотехника — SRAM не требуются сложные контроллеры.

Возможны очень низкие частоты синхронизации, вплоть до полной остановки синхроимпульсов.

Недостатки

Высокое энергопотребление.

Невысокая плотность записи.

Вследствие чего — дороговизна килобайта памяти.

 

Тем не менее, высокое энергопотребление не является принципиальной особенностью SRAM, оно обусловлено высокими скоростями обмена с данным видом внутренней памяти процессора. Энергия потребляется только в момент изменения информации в ячейке SRAM.

Применение

SRAM применяется в микроконтроллерах и ПЛИС, в которых объём ОЗУ невелик (единицы килобайт), зато нужны низкое энергопотребление (за счёт отсутствия сложного контроллера динамической памяти), предсказываемое с точностью до такта время работы подпрограмм и отладка прямо на устройстве.

В устройствах с большим объёмом ОЗУ рабочая память выполняется как DRAM. SRAM’ом же делают регистры и кэш-память.

Флеш-память (англ. Flash-Memory) — разновидность твердотельной полупроводниковой энергонезависимой перезаписываемой памяти.

 

Она может быть прочитана сколько угодно раз, но писать в такую память можно лишь ограниченное число раз (максимально — около миллиона циклов). Распространена флеш-память, выдерживающая около 100 тысяч циклов перезаписи — намного больше, чем способна выдержать дискета или CD-RW.

 

Не содержит подвижных частей, так что, в отличие от жёстких дисков, более надёжна и компактна.

 

Благодаря своей компактности, дешевизне и низком энергопотреблении флеш-память широко используется в портативных устройствах, работающих на батарейках и аккумуляторах — цифровых фотокамерах и видеокамерах, цифровых диктофонах, MP3-плеерах, КПК, мобильных телефонах, а также смартфонах и коммуникаторах. Кроме того, она используется для хранения встроенного программного обеспечения в различных устройствах (маршрутизаторах, мини-АТС, принтерах, сканерах), различных контроллерах.

 

Флеш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

 

NOR

 

В основе этого типа флеш-памяти лежит ИЛИ‑ НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

 

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Некоторые электроны туннелируют через слой изолятора и попадают на плавающий затвор, где и будут пребывать. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

 

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флеш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

 

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

 

В NOR архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND архитектуры.

 

NAND

 

В основе NAND типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND чипа может быть существенно меньше. Так же запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

 

NAND и NOR архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

 

История

 

Флеш-память была изобретена Фудзи Масуока (Fujio Masuoka), когда он работал в Toshiba в 1984 году. Имя «флеш» было придумано также в Toshiba коллегой Фудзи, Сёдзи Ариизуми (Shoji Ariizumi), потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния. Intel увидела большой потенциал в изобретении и в 1988 году выпустила первый коммерческий флеш-чип NOR-типа.

 

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference. У него была больше скорость записи и меньше площадь чипа.

 



Компаратор

Компаратор (аналоговых сигналов) — электронная схема, принимающая на свои входы два аналоговых сигнала и выдающая логический «0» или «1», в зависимости от того, какой из сигналов больше.

 

Простейший компаратор представляет собой дифференциальный усилитель. Компаратор отличается от линейного операционного усилителя (ОУ) устройством и входного, и выходного каскадов:

Входной каскад компаратора должен выдерживать широкий диапазон входных напряжений между инвертирующим и неинвертирующим входами, вплоть до размаха питающих напряжений, и быстро восстанавливаться при изменении знака этого напряжения. В ОУ, охваченном обратной связью, это требование некритично, так как дифференциальное входное напряжение измеряется милливольтами и микровольтами.

Выходной каскад компаратора выполняется совместимым по уровням и токам с конкретным типом логических схем (ТТЛ, ЭСЛ и т.п.). Возможны выходные каскады на одиночном транзисторе с открытым коллектором (совместимость с ТТЛ и КМОП логикой).

 

Несколько реже применяются компараторы на основе логических элементов, охваченных обратной связью (см., например, триггер Шмитта - не компаратор по своей природе, но устройство с очень схожей областью применения).

 

Компараторы, построенные на двух дифференциальных усилителях, можно условно разделить на двухвходовые и трёхвходовые. Двухвходовые компараторы применяются в тех случаях, когда сигнал изменяется достаточно быстро (не вызывает дребезга), и на выходе генерируют один из потенциалов, которыми запитаны операционные усилители (как правило - +5В или 0). Трёхвходовые компараторы имеют более широкую область применения и обладают двумя опорными потенциалами, за счёт чего их вольт-амперная характеристика может представлять собой прямоугольную петлю гистерезиса.

 

Пример широко известного компаратора - LM339. Эта микросхема часто встречается, в частности, на материнских платах ЭВМ.


Поделиться:



Последнее изменение этой страницы: 2019-03-20; Просмотров: 316; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.016 с.)
Главная | Случайная страница | Обратная связь