Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Хранение информации о рельефе
Информация о рельефе может храниться в том виде, в каком была создана, или же преобразуется к более компактному виду без потери качества. 3.3.1 Регулярная сетка. Цифровая матрица высот. Виды сеток рассмотрели выше. Координаты начальной точки (XYZ или XY), постоянный шаг (dX,dY, dZ) по каждой оси и список превышений. 1. В каждой строке шаг идет от одного начала, то есть графически это система квадратов или прямоугольников. 2. В каждой следующей строке сдвиг на полшага, что графически представится как сеть треугольников. 3. Сдвиг на полшага каждой пары строк, что графически выглядит как пчелиные соты. Соответственно в последующем обрабатываются прямоугольники, треугольники или шестиугольники. 3.3.2 Полурегулярная сетка. Может применяться иерархическая схема записи координат (как в методе “режь-клей”). Область последовательно разбивают на сеть все меньших прямоугольников (каждый крупный на четыре части, как листы топографических карт), Местоположение прямоугольника определяет запись, подобно номенклатуре топогр. карты. ( Аналогично область можно разбивать на треугольники, проводя высоту треугольника, т.е. треугольник делим на два.) Смежные прямоугольники с равной высотой объединяются в один многоугольник. Адрес вершины многоугольника это набор двоичных битовых кодов (0,1), на основе иерархии прямоугольников (треугольников) от наибольшего, до наименьшего. Следовательно, длина адреса для разных фигур и их частей различна. Для большой фигуры адрес будет более короткий. (Подобие номенклатуры топографических карт). Запись горизонталей или профилей с помощью единичных векторов и азимутов (углов наклона) ( константа - высота или направление, которые присваиваются каждой линии). Шаг - единичный вектор. Для горизонтали он в плоскости, параллельной ХУ, для профиля вектор лежит в вертикальной плоскости. Фиксация каждой последующей точки может проводиться оператором ли автоматически. В последнем случае задают коридор для отрезка прямой (диапазон высот или диапазон изменения плановых координат или диапазон изменения азимута, наклона). При выходе за его предел автоматически фиксируется точка поворота.
3.3.3 Нерегулярная сетка м.б. записана тремя координатами ее узлов (вершин треугольников или 4-угольников). Градиенты - записываются тангенс угла наклона ската и направления наклона - единица горизонтального проложения. Т.е. запись подобна штриховой шкале высот на карте в картографии. Векторная матрица. 3.3.4 Случайная сетка м.б. записана ее статистическими характеристиками случайной величины или случайной функции. МО, стандарт, корреляция и др. Для случайной функции эти характеристики суть неслучайные функции. ================================== Свертка (уплотнение) записи информации о рельефе достигается путем введения правил распределения точек и устранения записи координат (они вычисляются по этому правилу). Например, сетки высот. исключения повторяющихся значений в записи и указания повторителя. свертки (повторителей со значением) многих в одно. уплотнения записи в файле . выделения типов элементарных полей (полей с одинаковыми характеристиками). ====================== Восстановление информации о рельефе Специальные программы на основе правил свертки восстанавливают первоначальный или создают нужный вид из сжатой для хранения информации, переводят в сетку 3-мерных точек. (Гридфайл - строки высот, треугольники, регулярная сеть точек и т.п.). Прикладные программы работают уже с развернутой сеткой высот. ==================== Отображение форм рельефа 1 Горизонтали (сплайн, полином, единичный вектор, совместное решение уравнивания). 2 Отображение форм (модель сплошная или каркасная, для ее поверхности применяют линии, раскраски, тени, различные перспективы). (примечание: с помощью шкалы штрихов, как было принято в 18-19 веке, пока не отображают) Элементы отображения 0-мерные Точки (узлы node) 1-мерные Линии (векторы -отрезки прямых по 2 точкам, В-сплайны по 3-4точкам ) . 2-мерные Плоскости (плоские поверхности. плоские треугольники со смежными сторонами (общими вершинами) по 3 точкам каждый). 3-мерные Поверхности (surface) или объемы (Volume). Например, линейчатые поверхности, гиперболический параболоид, со смежными сторонами (общими вершинами) строятся по 4 точкам. 1. Более сложные поверхности в пространстве. Линейные поверхности Треугольник - плоскость Линейчатые поверхности. Гиперболический параболоид Нелинейные поверхности Кунса (привести картинки ) Полиномы Чебышёва, ортогональные; параметрические Бернштейна и Безье, Сплайны, NURBS: non-uniform, rational B-spline, (здесь или в ММО ) Поверхности вращения
МИКРОрельеф Ряд элементов рельефа может рассматриваться как объект. Соответственно и передается как контур: курган, обрыв, бровка, железнодорожная насыпь и т.п., но с высотной отметкой. С другой стороны контур, существенно возвышающийся над земной поверхностью, должен учитываться как элемент рельефа, препятствие, ориентир |
Последнее изменение этой страницы: 2019-03-22; Просмотров: 269; Нарушение авторского права страницы