Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация хроматографических методов



1) по агрегатному состоянию подвижной фазы

- газовая хроматография (ГХ)

- жидкостная хроматография (ЖХ)

2) по геометрии слоя неподвижной фазы

- колоночная

- плоскослойная (бывает бумажная и тонкослойная)

Метод ионообменной хроматографии основан на использовании явления ионного обмена между неподвижной твердой фазой — ионообменником (сорбентом) и подвижной жидкой фазой — раствором, содержащим ионы, обмениваемые с ионами сорбента.

Газовая хроматография — процесс разделения компонентов смеси, основанный на различии в равновесном распределении компонентов между двумя фазами — газом-носителем (подвижная фаза) и либо твердой фазой, либо жидкостью, нанесенной в виде тонкой пленки на поверхность твердого носителя или стенки хроматографической колонки (жидкая неподвижная, жидкая стационарная фаза). В первом случае метод называется газоадсорбционной хроматографией, во втором — газожидкостной (распределительной) хроматографией.

Высокоэффективная жидкостная хроматография, или жидкостная хроматография высокого давления, основана на тех же принципах, что и ГЖХ, только вместо газа-носителя в качестве ПФ применяется поток жидкости, не смешивающейся с жидкой НФ хроматографической колонкой.


59. Экстракция. Сущность метода. Закон распределения. Константа экстракции. Коэффициент распределения.

Одним из важных и распространенных методов концентрирования является экстракция. Метод отличается универсальностью: в настоящее время найдены способы экстракции почти всех элементов и большинства классов соединений. Метод характеризуется быстротой и простотой осуществления. Он применяется в большинстве аналитических лабораторий, особенно, где работают с веществами высокой чистоты.

Экстракцией , как известно, называют процесс распределения растворенного вещества между двумя не смешивающимися жидкими фазами, а также метод выделения и разделения. Наиболее распространен случай, когда одной фазой является вода, второй – органический растворитель.

Способ экстракции применяется для двух целей:

для количественного извлечения одного из растворенных веществ – это исчерпывающая экстракция

для разделения двух растворенных веществ – это селективная экстракция

При экстракции обычно имеются две несмешивающиеся фазы и одно распределяемое вещество. Значит, при постоянных температуре и давлении система моновариантна. В условиях равновесия отношение концентраций распределяющегося вещества в обеих фазах (С0 и Св ) есть величина постоянная. Эта величина называется константой распределения (Р) или коэффициентом распределения.

                                                Р = С0 / Св                                                                            (15)

                                                Хw        Х0

 

                                                Р= (аx)0 / (аx )w = [X]0 / [X]w ,

где w , о – вода и органический растворитель

Р равен отношению активностей компонента в обеих фазах (но используется и отношение концентраций, так как экстрагируются обычно не ионы, а молекулы). Если в системе происходит полимеризация, то коэффициент распределения будет зависеть от концентрации и расчет станет более сложным.

Закон распределения Нернста-Шилова ( при постоянной температуре соотношение равновесных концентраций между несмешивающимися жидкостями является величиной постоянной, независимой от общего количества компонентов) справедлив, когда растворенное вещество находится в обеих фазах в одной и той же форме. В действительности вещество может диссоциировать и ассоциировать, сольватироваться и гидротироваться. Т.о., закон идеализирован, но многие экстракционные системы подчиняются этому закону. Вообще экстракционные системы весьма разнообразны. Правильный выбор системы в значительной степени определяет успех экстракционного разделения и концентрирования. В данной работе использованы внутрикомплексные соединения. Это один из самых распространенных классов соединений, используемых в экстракционном концентрировании. Впервые элементы концентрировали именно в виде дитизонатов (внутрикомплексных соединений). Впоследствии, наряду с дитизонатом, нашли широкое применение купферонаты, дитиокарбаминаты, 8-оксинолин, оксимы и др.

Рассмотрим экстракцию Х молей растворенного вещества (Vводы – Vw мл и Vорганической фазы – V0 мл).

Коэффициент распределения (Р) равен

         Р = [ X ]0 / [ X ]w = ( X –Y ) * Vw / V0 * Y ,                 

где Y – число молей, оставшихся в водной фазе после одной экстракции

    Неэкстрагированная доля составляет

     Y / X = f = 1 / (1 + P * (V0 / Vw )) = Vw / (Vw + PV0 )              

                   Основные термины экстракционного процесса:

Коэффициент распределения (или константа распределения) – см.выше.

Фактор разделения (S) – отношение коэффициентов распределения двух разделяемых веществ, причем большего к меньшему.

                     S = D1 /D2

% экстракции (степень извлечения) (R) – процент вещества, экстрагированного при данных условиях от общего количества. С коэффициентом распределения % экстракции связан соотношением

                                   R = 100D / (D + Vв / V0 ) , где Vв и V0 - равновесные объемы водной и органической фаз.

   4. Константа экстракцииext) – константа равновесия гетерогенной реакции экстракции

     Например, для внутрикомплексных соединений, экстракция которых протекает по уравнению Mn+ + nHAo         MАn(о) + nH+

константа экстракции равна Кext = [MАn]о * [ H+ ]n / [ Mn+] * [HA]no

Экстракт – отделенная органическая фаза, содержащая извлеченное из другой фазы вещество.

Экстрагент – органический растворитель, который извлекает вещество из водной фазы.

Реэкстракция – процесс обратного извлечения экстрагированного вещества из экстракта в водную фазу.

Реэкстракт – отделенная водная фаза, содержащая извлеченное из экстракта вещество.

Кривые экстракции – крутизна кривых тем больше, чем больше заряд иона металла.


60. Важнейшие растворители и реагенты, используемые в экстракции. Хелатные соединения в экстракции. Скорость экстракции. Примеры разделения биологических объёктов методом экстракции.

Одним из важных и распространенных методов концентрирования является экстракция. Метод отличается универсальностью: в настоящее время найдены способы экстракции почти всех элементов и большинства классов соединений. Он пригоден и для отделения микропримесей, и для отделения вещества-основы, дело лишь в правильном выборе экстракционной системы и условий процесса разделения. Экстракция обычно обеспечивает высокую эффективность концентрирования. Метод характеризуется быстротой и простотой осуществления. Он применяется в большинстве аналитических лабораторий, особенно, где работают с веществами высокой чистоты.

Экстра́кция — метод извлечения вещества из раствора или сухой смеси с помощью подходящего растворителя (экстраге́нта). Для извлечения из раствора применяются растворители, не смешивающиеся с этим раствором, но в которых вещество растворяется лучше, чем в первом растворителе.

Экстракция может быть разовой (однократной или многократной) или непрерывной (перколя́ция).

Простейший способ экстракции из раствора — однократная или многократная промывка экстрагентом в делительной воронке. Делительная воронка представляет собой сосуд с пробкой и краном для слива нижнего слоя жидкости. Для непрерывной экстракции используются специальные аппараты — экстракторы, или перколяторы.

Для извлечения индивидуального вещества или определённой смеси (экстракта) из сухих продуктов в лабораториях широко применяется непрерывная экстракция по Сокслету.

В лабораторной практике химического синтеза экстракция может применяться для выделения чистого вещества из реакционной смеси или для непрерывного удаления одного из продуктов реакции из реакционной смеси в ходе синтеза.

Электрохимическими называются процессы:

а) протекающие в растворе под воздействием электрического тока (электролиз);

б) протекающие в растворе и приводящие к возникновению электрического тока во внешней цепи (гальванический элемент).

Большинство электрохимических процессов являются окислительно-восстановительными.

Схема ОВР:                                 Ок1 + Вос2 D Ок2 + Вос1

Ок1 / Вос1 и Ок2 / Вос2 – сопряженные пары.

Если ОВР протекает в водном растворе, то характеристикой каждой сопряженной пары является ее окислительно-восстановительный потенциал (ОВП), φок/вос, В. Чем меньше ОВП, тем сильнее восстановитель и слабее сопряженный с ним окислитель.

Сила окислителей и восстановителей зависит от их природы, концентрации, температуры, иногда от рН.

Влияние температуры и концентрации на ОВ свойства веществ описывается уравнением Нернста (1889):

где n – число отданных или принятых электронов,

F – число Фарадея, равное 96500 Кл/моль,

тогда

Характеристикой ОВР является ее электродвижущая сила (ЭДС) Е, В:

Е = φОк1/Вос1 – φОк2/Вос2

Если Е > 0, то ΔrG < 0 – реакция протекает самопроизвольно;

Если E < 0, то ΔrG > 0 – реакция протекает несамопроизвольно.

Большинство ОВР имеют обратимый характер, поэтому их важной характеристикой является константа равновесия (К):

ΔrG0 = – RTlnK                                                 ΔrG0 = – nFE0                                                                        nFE0 = RTlnK

Отсюда

Гальванический элемент – это устройство для превращения химической энергии ОВР в электрическую энергию. Причиной возникновения и протекания электротока в ГЭ является разность ОВ (электродных) потенциалов.

ОВ потенциал возникает на границе раздела металл-раствор электролита вследствие того, что металл и раствор становятся разноименно заряженными.

Ме – n ē D Меn+ag

Для активных металлов равновесие смещено вправо, для малоактивных – влево.

ГЭ состоит из двух электродов (полуэлементов). Например, медно-цинковый элемент.

Устройство и принцип действия Медно-цинкового электрода

Медный и цинковый электроды соединены металлическим проводником, образующим внешнюю цепь гальванического элемента. Растворы солей CuSO4 и ZnSO4 соединены между собой солевым мостиком, образующим внутреннюю цепь гальванического элемента. Цинковый электрод является анодом; на нем протекает процесс окисления:

Zn – 2ē D Zn2+

Электроны, отданные цинком, поступают во внешнюю цепь и мигрируют к медному электроду. Катионы Zn2+ переходят в раствор, вследствие чего раствор приобретает положительный заряд, а электрод – отрицательный.

Медный электрод является катодом; на нем протекает процесс восстановления:

Cu2+ + 2ē D Cu

Катионы Cu2+ принимают электроны, поступающие из внешней цепи, и, восстанавливаясь, осаждаются на медном электроде. В результате раствор приобретает отрицательный заряд, а электрод – положительный.

Схема медно-цинкового гальванического элемента

(–)Zn / Zn2+ // Cu2+/ Cu (+)

/ обозначает поверхность раздела металл-раствор, а также ОВ потенциал (электродный потенциал), возникающий на поверхности электрода из-за того, что металл и раствор имеют разноименные заряды.

// обозначают границу раздела двух растворов, а так же диффузионный потенциал, возникающий из-за их разноименных зарядов.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 262; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.03 с.)
Главная | Случайная страница | Обратная связь