Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема: «Отработка версий о причастности к возникновению пожара»
3.11.1.Вопросы семинара:
1 Аварийные режимы работы электросетей 2. Тепловые воздействия электронагревательных приборов 3. Тепловое проявление механической энергии, разряды статистического или атмосферного электричества 4. Воздействие маломощных источников зажигания, протекание процессов самовозгорания 5. Расследование пожаров, протекающих через стадию тлеющего горения
3.11.2 Краткое содержание вопросов занятия
Причастным к возникновению пожара может быть практически любой электронагревательный прибор - электрокипятильник, утюг, паяльник, чайник, плитка, обогреватель (камин, радиатор, конвектор), жарочный электрошкаф, прибор приготовления пищи с инфракрасным нагревателем и др. Пожар может возникнуть в результате: - теплового воздействия на окружающие конструкции и предметы; - загорания веществ и материалов, попавших на конструктивные элементы прибора, нагретые до необходимых для загорания температур; - работы прибора в нештатных условиях (например, чайника или кипятильника без воды); - возникновения аварийного пожароопасного режима в электрической части прибора. В связи с этим изучению и фиксации в протоколе осмотра подлежат место обнаружения электронагревательного прибора или его остатков (фрагментов), вблизи
66 расположенные конструкции и предметы, а сам электронагревательный прибор - изъятию в качестве объекта исследования. Пожароопасность отдельных видов и марок приборов определяется их конструктивными особенностями и мощностью. Остановимся на некоторых из них. Отопительные приборы излучательного типа с открытыми нагревательными элементами особо опасны. Горение может возникнуть при их опрокидывании или прижатии к сгораемым конструкциям и предметам, при попадании непосредственно на нагревательный элемент горючих веществ и материалов. В ряде случаев возможность загорания не исключается при наличии защитных сеток и экранов. Конвекционные отопительные приборы бывают двух типов - конвекторы и радиаторы. Радиаторы бывают с промежуточным теплоносителем (маслонаполненные) и сухие. Конвекционные приборы более пожаробезопасны. Средняя температура их внешней поверхности составляет 80-85°С, а максимальная обычно не превышает 100-110°С. Тем не менее они могут быть причастны к возникновению пожара - прежде всего при неисправности терморегулятора и нарушении правил эксплуатации прибора. Потенциально опасными являются появившиеся в большом количестве в последнее время нагревательные панели из полимерных материалов (типа "Слотерм", "Доброе тепло" и др.). Электроутюги с исправным терморегулятором по общему мнению специалистов, как правило, не вызывают загорания горючих материалов в течение длительного времени (24-33 ч). При зашунтированном (неисправном) терморегуляторе в условиях испытаний загорание стеганой ваты происходило через 3,5-5 мин, подплавление алюминиевой подошвы через 13-20 мин. Через 2 ч под подошвой утюга и на корпусе у подошвы 380-400°С, на корпусе у ручки 300°С. В отдельных случаях температура на подошве утюга достигает 400-500°С. Электрочайники современной конструкции, как правило, имеют трубчатые электронагревательные элементы (ТЭН) непосредственно в объеме нагреваемой воды, ближе к днищу. При выкипании воды происходит оголение ТЭНа, перегрев его, деформация и, как следствие, замыкание спирали ТЭНа на корпус. В этой ситуации часто возникает КЗ с образованием дуги, проплавлением оболочки и разбрызгиванием раскаленных частиц металла - потенциальных источников зажигания. Признаками работы электрического чайника в аварийном режиме являются: - наличие проплавлений трубки ТЭНа или разрушений ТЭНа; - следы дугового режима - локальные оплавления (проплавления) корпуса и (или) отдельных деталей чайника (если он металлический); - застывшие капли (брызги металла). Современные электрочайники зарубежного производства более пожаробезопасны (по крайней мере, теоретически) - они снабжены устройством, отключающим чайник после закипания воды. Однако у большинства моделей это устройство представляет собой датчик, срабатывающий на повышение давления внутри чайника, возникающее при кипении воды. И если по небрежности пользователя крышка чайника после его включения остается неплотно закрытой, то датчик давления не срабатывает, чайник не отключается, а оголившийся при выкипании воды ТЭН создает вышеописанную ситуацию. Не спасает при этом в ряде случаев и так называемый "второй уровень защиты" - тепловой датчик. Учитывая мощность чайника (до 2 кВт) и то, что его корпус сделан из пластмассы, возникновение и развитие горения будет происходить более динамично, нежели в отечественном чайнике с металлическим корпусом. Вторым слабым местом описанных выше чайников является разъем, соединяющий чайник с подставкой (базовой платой с проводом для включения чайника в сеть). У относительно дешевых чайников малоизвестных фирм этот разъем бывает крайне ненадежен, в нем часто возникает БПС, иногда переходящее в дугу. После пожара от подобных чайников находят обычно один ТЭН и металлические детали подставки. Наличие в ТЭНе локального проплавления оболочки будет свидетельством работы чайника в аварийном режиме и вероятной причастности к возникновению пожара. 67 Э лектрокипятильники с оболочкой из медных сплавов и с тали. К кипятильникам этой группы относятся кипятильники класса ЭПМ (электрокипятильник погружной, малого габарита). В соответствии с ГОСТ они выпускаются мощностью 0,3; 0,5; 0,7 кВт. Это самые распространенные в быту электрокипятильники, рассчитанные на нагрев 0,25-0,5 л воды. Нагревательный элемент кипятильника - ТЭН - состоит из оболочки (латунь, сталь 10 или 20), внутри которой находятся проволока сопротивления (спираль) и мелкозернистый наполнитель - периклаз, который выполняет функцию изолятора, отделяющего спираль от оболочки ТЭНа. Во включенном состоянии, но без погружения в воду, кипятильник в течение нескольких минут раскаляется докрасна, температура оболочки в зоне нахождения электроспирали достигает 700-750°С. Кипятильник может сам обесточиться, если от нагрева произойдет нарушение спаев выводных концов нагревательной спирали со шнуром питания. В этом случае пожар может и не произойти. Если же провод питания припаян качественно, то кипятильник становится крайне опасным источником зажигания. Пожар может начаться в следующих случаях: а) при опрокидывании емкости, в которой находился кипятильник, или при разрушении стеклянного стакана, после того как из него выкипела вода; в этом случае загорание происходит при непосредственном контакте кипятильника со сгораемым материалом; б) если кипятильник находится в алюминиевой или стальной эмалированной кружке, стоящей на сгораемом основании, то возможно загорание этого основания от контактного нагрева кружкой, разогретой кипятильником. Эксперимент в лаборатории показал, что алюминиевая кружка емкостью 250 мл с включенным в сеть электрокипятильником прожигает дыру в 40-миллиметровой сосновой доске за 2-2,5 ч после выкипания воды. На пожаре от кипятильника часто остается один нагревательный элемент. Визуальным признаком работы ТЭНа в аварийном режиме (без воды) является более светлый цвет трубки в зоне концевого участка и более темный там, где уложена спираль. Точнее это можно установить путем инструментальных исследований трубки ТЭНа в лаборатории, для чего остатки кипятильника должны быть изъяты с места пожара. Э лектрокипятильники с оболочкой из алюминиевых сплавов выпускаются согласно ГОСТу, класса ЭПО (электрокипятильник погружной основного габарита) и ЭПОТ. Они имеют мощность 1,0-1,6 кВт, длину около 25 см и предназначены для кипячения воды в объеме от одного до нескольких литров. Выпускают в настоящее время с трубкой ТЭНа из алюминиевых сплавов и кипятильники меньших габаритов, промежуточных между ЭПМ и ЭП. Нагрев таких кипятильников без водяного охлаждения вызывает расплавление трубки ТЭНа на спиральном участке. Иногда разрушение трубки у перегретого кипятильника происходит взрывообразно. При расплавлении трубки ТЭНа нагретая спираль, прежде чем перегореть, может находиться в раскаленном состоянии до 15- 20 мин и представляет собой в таком виде мощный источник зажигания. Кипятильник после пожара может иметь самый различный (в зависимости от обстоятельств пожара) вид - от относительно сохранившегося устройства с деформированным, расплавленным частично или полностью ТЭНом, до расплавленного алюминиевого агломерата со спиралью внутри или вне его. Электрогрелки состоят обычно из следующих основных элементов: основания, выполненного из байковой ткани, и помещенного внутрь него электронагревательного провода; термоограничительного устройства; двухпозиционного переключателя мощности и дополнительного сопротивления регулировки мощности; покрышки (чехла) из легкой ткани [100]. Являются достаточно опасными в эксплуатации электроприборами, несмотря на наличие в большинстве из них термоограничительных устройств. Рабочая температура таких грелок 40-65°С, потребляемая мощность 30-60 Вт. Однако, как показали эксперименты, температура нагреваемой поверхности даже при нормальных условиях эксплуатации может достигать 70-100°С. Температурное поле у грелок неравномерное, температура в одних точках может превышать температуру в других в 1,5-2 раза. Положение усугубляется, когда вопреки инструкциям по эксплуатации грелка 68 оказывается в сложенном виде или прикрыта одеялом, - температура при этом достигает 140-170°С, и может загореться как сама грелка, так и находящиеся в контакте с ней материалы, в первую очередь склонные к тлению. К дефектам проводов, представляющим интерес при осмотре места пожара и потому требующим выявления и фиксации, относятся механические повреждения (надломы, разрезы, обрывы и т. д.), повреждения, возникающие под воздействием более легкоплавкого металла (растворение металла в металле) и оплавления. Механические повреждения могут возникнуть до пожара или в ходе пожара и не иметь причинной связи с его возникновением. Могут, однако, и иметь - например, при полном или частичном изломе жил проводника и возникновении больших переходных сопротивлений (БПС) или преднамеренном их разрушении в целях совершения поджога, замаскированного под техническую причину. Бывают и ситуации, когда механическое повреждение визуально трудно отличить от дугового оплавления. Во всех такого рода подозрительных ситуациях участок провода должен быть изъят и направлен на лабораторные исследования. Расплавления металла в металле возникают при попадании расплавленного алюминия на медь, латунь, сталь, олова или свинца на сталь и в некоторых других ситуациях. Возникающие термические поражения (расплавления, про плавления) внешне похожи на последствия электродуговых процессов, и для установления природы разрушения металла (сплава) также необходимо изъятие подозрительного объекта (в данном случае - провода) и направление его на лабораторные исследования. Оплавления проводов наиболее заметны на исследуемой электропроводке. Они могут быть следствием: - воздействия электрической дуги; - воздействия внешнего тепла пожара; - разогрева провода за счет тепловыделения при перегрузке или коротком замыкании (для провода это, по сути, разновидность перегрузки). Провода, оплавленные теплом пожара, как правило, не представляют интереса с точки зрения установления причины пожара. Иное дело - провода с дуговыми оплавлениями. Если проводов с оплавлениями немного, то все они могут быть изъяты для лабораторных исследований в целях установления природы оплавления и характера возможного дугового процесса (так называемые "первичное", "вторичное" КЗ). На крупном пожаре, на энергонасыщенном объекте, проводов с оплавлениями могут оказаться сотни, и все их изымать на исследование нецелесообразно. В этом случае необходима предварительная дифференциация дуговых оплавлений и оплавлений теплом пожара путем визуального осмотра проводов.
3.12.Семинарское занятие 17 (2 часа)
|
Последнее изменение этой страницы: 2019-03-22; Просмотров: 1111; Нарушение авторского права страницы