Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Анализ устойчивости с помощью алгебраических критериев



Устойчивость системы связана с характером ее собственных колебаний. Чтобы пояснить это, предположим, что система описывается дифференциальным уравнением

или, после преобразования Лапласа,

,

где g(p) – входное воздействие.

Устойчивая система возвращается в состояние покоя, если входное воздействие g(p) 0 . Таким образом, для устойчивой системы решение однородного дифференциального уравнения должно стремиться к нулю при t стремящемся к бесконечности.

Если найдены корни p1, p2, ... , pn характеристического уравнения , то решение однородного уравнения запишется в виде .

В каких же случаях система устойчива?

Предположим, что pk = ak – действительный корень.

Ему соответствует слагаемое ck . При ak < 0 это слагаемое будет стремиться к нулю, если t стремится к бесконечности. Если же ak > 0, то x(t) , когда t стремится к бесконечности; . Наконец, в том случае, когда ak = 0, рассматриваемое слагаемое не изменяется и при t стремящемся к бесконечности,

Допустим теперь, что – комплексный корень характеристического уравнения. Заметим, что в этом случае также будет корнем характеристического уравнения. Двум комплексно-сопряженным корням будут соответствовать слагаемые вида , .

При этом, если ak < 0, то в системе имеются затухающие колебания. При ak > 0 – колебания возрастающей амплитуды, а при ak = 0 -колебания постоянной амплитуды сk.

Таким образом, система устойчива, если действительные части всех корней характеристического уравнения отрицательны. Если хотя бы один корень имеет действительную часть ak ³ 0, то система неустойчива. Говорят, что система находится на границе устойчивости, если хотя бы один корень характеристического уравнения имеет нулевую действительную часть, а действительные части всех остальных корней отрицательны.

Это определение хорошо иллюстрируется геометрически. Представим корни характеристического уравнения точками на комплексной плоскости (рис. 15).

Рис. 15.

Если все корни лежат в левой полуплоскости комплексного переменного, то система устойчива. Если хотя бы один корень лежит в правой полуплоскости комплексного переменного - система неустойчива. Если же корни находятся на мнимой оси и в левой полуплоскости, то говорят, что система находится на границе устойчивости.

Рассмотрим в качестве примера замкнутую систему управления c одним интегрирующим звеном. В этом случае H(p) = , , а передаточная функция замкнутой системы

.

Выходной сигнал системы x(p) = W(p)g(p) или . Заметим, что характеристическое уравнение p+k=0 записывается с помощью приравнивания к нулю знаменателя передаточной функции замкнутой системы управления. В данном случае имеется один корень p1= -k < 0 и поэтому система управления всегда устойчива. Предположим теперь, что . Тогда . Характеристическое уравнение p2 + + k = 0. Поэтому p1,2= . Система находится на границе устойчивости. В ней существуют незатухающие колебания.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 262; Нарушение авторского права страницы


lektsia.com 2007 - 2025 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь