Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тема 7. СОВРЕМЕННЫЕ МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ



 

Кибернетика

 

Современная наука в отличие от классической занимается изучением сложных систем  с большим количеством элементов и связей между ними. В классе сложных систем можно выделить подкласс систем с так называемой «обратной связью». Различают два типа обратной связи:

положительная обратная связь  между системой и средой, в результате которой внешнее воздействие среды приводит к накоплению внутренних изменений в системе и образованию новых структур;

отрицательная обратная связь  между системой и средой, в результате которой внешнее воздействие среды уменьшается или сводится на нет, а система возвращается к своему инварианту, т. е. отклонение от стабильного состояния корректируется после получения информации об этом.

Кибернетика  занимается изучением сложных систем с отрицательной обратной связью, т. е. таких систем, которые поддерживают инвариантное состояние в результате взаимодействия с окружающей средой. Как писал основатель кибернетики американский математик Н. Винер, «жизнь – это островок „здесь-сейчас“ в умирающем мире. Процесс, благодаря которому мы противостоим потоку разрушения и упадка, называется гомеостазом. Мы продолжаем жить в очень специфической среде, которую несем с собой до тех пор, пока разрушение не станет преобладать над процессом нашего собственного восстановления. Тогда мы умираем».

Слово «кибернетика» происходит от греч. kybernetike – искусство управления. Кибернетика возникла на стыке математики, техники и нейрофизиологии и представляет собой междисциплинарный подход в рамках новой системной научной парадигмы, который применяется не только в названных дисциплинах, но и в физике, геологии, биологии, социологии. Начало эры кибернетики связывают с выходом в 1948 г. книги Н. Винера «Кибернетика, или Управление и связь в животном и машине».

Кибернетика изучает процессы управления, связанные с обменом информацией между системой и средой, и выявляет зависимости, существующие между информацией и другими характеристиками системы. Информация – центральное понятие кибернетики. Как писал Н. Винер в работе «Человеческое использование человеческих существ: Кибернетика и общество», «в то время как энтропия является мерой дезорганизованности, информация, переносимая некоторым потоком посланий, определяет меру организованности. Фактически мы можем определить информацию^ как отрицательную энтропию».

В рамках кибернетики формулируются и другие понятия: «обратная связь», «управление», «организованность» и т. п., которые также используются многими научными дисциплинами. Кибернетика дает новые методы исследования, в частности, на закономерностях, открытых кибернетикой, основан метод моделирования, широко используемый как в естественных, так и в гуманитарных науках (1.5). Создатель кибернетики Н. Винер вообще утверждает, что «физическое функционирование живого организма и наиболее современных коммуникационных машин примерно одинаковы в стремлении контролировать уровень энтропии при помощи обратной связи. Обе системы имеют сенсоры или рецепторы, позволяющие получать информацию из окружающей среды на низком энергетическом уровне и использовать ее для дальнейших действий в отношении внешнего мира. В обоих случаях присутствуют искажения информации за счет влияния самого аппарата восприятия, живого или искусственного. Целью получения информации является повышение эффективности действий во внешней среде. В обоих случаях результат совершенных действий (а не намерений) возвращается к некоторому регулирующему центру». Таким образом, процессы управления, считает Н. Винер, подчиняются единым закономерностям независимо от того, протекают они в обществе, живой или неживой природе.

На основе кибернетики возникло новое направление научного исследования – информатика. Информатика  представляет собой науку о взаимодействиях человека с получаемой им информацией. Она призвана выявить законы такого взаимодействия и на их основе сформулировать принципы его оптимизации.

В конце XX в. развитие информационных технологий привело к созданию глобальной информационной сети Интернет. С технической точки зрения Интернет – это объединение транснациональных компьютерных сетей, связывающих всевозможные типы компьютеров, физически передающих информацию по всем доступным типам линий. Сеть Интернет децентрализована, поэтому отключение даже значительной части компьютеров не повлияет на ее работу. В 1995 г. число полноценно подключенных к глобальной сети компьютеров составило около 7 млн, а число абонентов– 15 млн. Ежемесячно глобальная сеть растет примерно на 7-10 %. По некоторым прогнозам, уже в первые десятилетия наступившего века Интернет станет доступен так же, как телефон или телевидение. Интернет, поначалу обслуживающий учебные или исследовательские программы, теперь востребован в бизнесе, политике и, конечно, стал глобальной сферой общения. В архивах свободного доступа виртуальной сети можно найти информацию по всем видам человеческой деятельности.

Развитие информационных технологий в последние годы значительно изменило жизнь людей. Понятие информации прочно вошло как в обыденный, так и в научный обиход. На государственном уровне обсуждаются вопросы информационного развития и информационной безопасности общества. И хотя борьба политиков с так называемым информационным хаосом выглядит сомнительно, поскольку сомнительно само понятие информационного хаоса, тем не менее очевидно, что информация стала важнейшим фактором развития современной культуры.

 

 

Синергетика

 

Большинство реальных процессов в природе носит необратимый характер, и фактор времени играет существенную роль для их описания. Однако долгое время физика изучала только обратимые процессы. В классической механике достаточно было задать систему координат и скорость движущегося тела, для того чтобы определить характер его движения. С помощью математических вычислений, зная начальные условия, можно было определить положение тела в любой момент как в прошлом, так и в настоящем или будущем.

Впервые фактор времени был учтен при описании тепловых процессов в термодинамике. В науку было введено понятие энтропии – меры беспорядка в системе (2.3). Однако понимание необратимости процессов в термодинамике, связанных с повышением энтропии, дезорганизацией и разрушением системы, конфликтовало с явлениями самоорганизации и усложнения систем, которые наблюдались в живой природе. Эволюция живых систем, вопреки законам возрастания энтропии, приводила к их усложнению и повышению степени самоорганизации. Окончательно противоречие физических и биологических представлений было осознано в конце XIX в. после создания эволюционной теории Ч. Дарвина.

Конфликт физических и биологических представлений удалось разрешить после того, как наука обратилась к понятию открытой системы. В закрытых системах,  которые рассматривались классической физикой в качестве естественных, не происходит обмена энергией и веществом с внешним миром. В замкнутых системах вектор протекания процессов направлен от упорядоченности через равновесие к хаосу. Такие системы стремятся к состоянию максимальной неупорядоченности. Основными характеристиками процессов в замкнутых системах являются равновесность и линейность.

Открытые системы,  напротив, обмениваются энергией, веществом и информацией с внешним миром. В таких системах при определенных условиях могут самопроизвольно возникать новые упорядоченные структуры, повышающие степень самоорганизации системы. Ключ к пониманию процессов самоорганизации был найден в представлении о взаимодействии системы с окружающей средой. Основными характеристиками процессов в открытых системах являются неравновесность и нелинейность.

Изучением открытых неравновесных систем занимается синергетика. Синергетика  возникла на стыке физики и химии в 70-е гг. XX в., а затем приобрела статус междисциплинарного подхода. Основоположниками синергетики являются И. Пригожин и Г. Хакен. Термин «синергетика» происходит от греч. sinergia – сотрудничество, содействие.

Синергетика, так же как кибернетика, изучает системы с обратной связью. Однако в отличие от кибернетики, изучающей динамическое равновесие в самоорганизующихся системах, синергетика исследует механизмы возникновения новых структур за счет разрушения старых, а не процессы стабилизации. Синергетические системы функционируют в соответствии с принципом положительной обратной связи.

Синергетика является наиболее общей на данный момент теорией самоорганизации и изучает закономерности этих явлений во всех типах материальных систем. Как пишет Г. Хакен, принципы самоорганизации распространяются «от морфогенеза в биологии, некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики до космических масштабов эволюции звезд, от мышечного сокращения до вспучивания конструкций». Синергетика претендует на открытие универсальных механизмов самоорганизации как в живой, так и в неживой природе. Теоретической основой синергетики выступает термодинамика нелинейных систем, или неравновесная термодинамика.

Исходным принципом синергетической концепции является различие процессов в открытых и закрытых системах. В отличие от классической науки, рассматривавшей закрытые системы как абсолютный тип упорядоченности мира, синергетика в качестве предмета изучения выбирает открытые системы. По мнению ее создателей, именно открытые системы являются универсальными, а протекающие в них процессы способствуют самоорганизации мира. «Искусственное может быть детерминированным и обратимым, – пишут И. Пригожин и И. Стенгерс, – естественное же непременно содержит элементы случайности и необратимости». Система называется самоорганизующейся, если она без специального воздействия извне обретает новую пространственную, временную или иную структуру. Главные свойства открытых самоорганизующихся систем – неустойчивость и нелинейность.

Опираясь на это знание, синергетика предлагает следующее объяснение механизма возникновения порядка из хаоса. Пока система находится в состоянии термодинамического равновесия, все ее элементы ведут себя независимо друг от друга и на создание упорядоченных структур неспособны. В какой-то момент поведение открытой системы становится неоднозначным. Та точка, в которой проявляется неоднозначность процессов, называется точкой бифуркации (разветвления). В точке бифуркации изменяется роль внешних для системы влияний: ничтожно малое воздействие приводит к значительным и даже непредсказуемым последствиям. Между системой и средой устанавливается отношение положительной обратной связи, т. е. система начинает влиять на окружающую среду таким образом, что формирует условия, способствующие изменениям в ней самой. Т. е. система противостоит разрушительным влияниям среды, меняя условия своего существования.

Под влиянием энергетических взаимодействий с окружающей средой в открытых системах возникают так называемые эффекты согласования и кооперации, когда различные элементы начинают действовать в унисон. Такое согласованное поведение синергетика называет когерентным. Как следствие происходят процессы упорядочения, возникновения из хаоса новых структур. После возникновения новая структура, называемая диссипативной, включается в дальнейший процесс самоорганизации материи. Диссипативные структуры возникают за счет рассеяния (диссипации) энергии, использованной системой, и получения новой энергии из окружающей среды. Диссипатив-ная структура как бы извлекает порядок из окружающей среды, повышая собственную внутреннюю упорядоченность и увеличивая хаос и беспорядок во внешнем мире.

Таким образом, внешние взаимодействия оказываются фактором внутренней самоорганизации систем, которые в свою очередь способствуют самоорганизации других систем и т. д. Взаимодействие системы со средой оказывается существенным условием ее эволюции. Процессы самоорганизации характеризуются нелинейностью, наличием обратных связей, открывающих большие возможности управляющего воздействия.

Направление развития системы после прохождения точки бифуркации оказывается непредсказуемым. Однозначно спрогнозировать будущее открытой неравновесной системы оказывается невозможным. Таким образом, ключевую роль в процессах самоорганизации играют случайные факторы. «Будущее при нашем подходе, – пишут И. Пригожин и И. Стенгерс, – перестает быть данным; оно не заложено более в настоящем. Это означает конец классического идеала всеведения». Представление об объективности случайных факторов становится фундаментальным принципом современной науки.

Синергетический подход позволяет ответить на вопрос: почему вопреки действию закона энтропии мир демонстрирует высокую степень организованности и порядка? Синергетика последовательно опровергает теорию тепловой смерти Вселенной (2.3). Хаос понимается как особый вид регулярной нерегулярности и более не рассматривается как разрушительное состояние. Хаос созидателен, поскольку развитие и самоорганизация систем осуществляются через хаотичность и неустойчивость. Синергетика утверждает, что законы самоорганизации действуют на всех уровнях материи, поэтому синергетический подход позволяет преодолеть разрыв между живой и неживой природой и объяснить происхождение жизни через самоорганизацию неорганических систем. Создатель новой концепции И. При-гожин считает, что синергетический взгляд на мир меняет наше представление о случайности и необходимости, необратимости материальных процессов, трансформирует привычное представление о времени, позволяет иначе понять характер и сущность энтропийных процессов. В настоящее время синергетический подход получил признание не только в естествознании, но и в гуманитарных и социальных науках. Более того, синергетика постепенно преодолевает границы междисциплинарных научных исследований, превращаясь в новую мировоззренческую парадигму.

 

 


Поделиться:



Последнее изменение этой страницы: 2019-03-31; Просмотров: 288; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь