Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация и система обозначений полупроводниковых диодов.



Полупроводниковые диоды

Рабочий режим диода

       В практических схемах в цепь диода включается какая-либо нагрузка, например резистор (рисунок 2.14, а). В условном графическом обозначении (схематическом изображении) полупроводникового диода треугольник является анодом, черточка – катодом. Прямой ток проходит тогда, когда анод имеет положительный потенциал относительно катода. Следовательно, треугольник нужно рассматривать как острие стрелки, показывающей условное направление прямого тока. Именно в этом направлении при прямом токе движутся дырки, электроны же движутся в противоположном направлении.

Режим диода с нагрузкой называют рабочим режимом. Если бы диод обладал линейным сопротивлением, то расчет тока в подобной схеме не представлял бы затруднений, так как общее сопротивление цепи равно сумме сопротивления диода постоянному току R0 и сопротивления нагрузочного резистора Rн. Но диод обладает нелинейным сопротивлением, и значение R0 у него изменяется при изменении тока. Поэтому расчет тока делают графически. Задача состоит в следующем: известны значения Е, Rн и характеристика диода, требуется определить ток в цепи и напряжение на диоде.

а)                                   б)                                                  в)

Рисунок 2.14 – Схема включения диода с нагрузкой и построение линии нагрузки

Характеристику диода следует рас­сматривать как график некоторого урав­нения, связывающего величины i и u. А для сопротивления Rн подобным уравнением является закон Ома:

i = uR/Rн = (E – u)/Rн.                                               (2.2)

Итак, имеются два уравнения с дву­мя неизвестными i и u, причем одно из уравнений дано графически. Для реше­ния такой системы уравнений надо по­строить график второго уравнения и найти координаты точки пересечения двух графиков.

Уравнение для сопротивления Rн – это уравнение первой степени относи­тельно i и u. Его графиком является прямая линия, называемая линией на­грузки. Проще всего она строится по двум точкам на осях координат. При i = 0 из уравнения (2.2) получаем: Е – u = 0 или u = Е, что соответствует точке А на рисунке2.14, б. А если u = 0, то i = E/Rн. Откладываем этот ток на оси ординат (точка Б). Через точки А и Б проводим прямую, которая является линией нагрузки. Координаты точки Т дают решение поставленной задачи. Сле­дует отметить, что все остальные точки прямой АБ не соответствуют каким-либо рабочим режимам диода. Можно строить линию нагрузки по углу ее наклона α, поскольку R0 = k ctg α Но это менее удобно, так как надо опреде­лять коэффициент k с учетом масшта­бов и находить угол α по его котан­генсу.

При построении линии нагрузки для сравнительно малых Rн точка Б окажется за пределами чертежа. В этом случае следует отложить от точки А влево произвольное напряжение U (рисунок 2.14, в) и от полученной точки В отложить ток, равный U/Rн (отрезок ВГ). Прямая, про­веденная через точки А и Г, будет линией нагрузки.

Иногда заданы u и i (точка Т) и сопротивление нагрузки Rн, а надо опре­делить Е, или, наоборот, при заданном Е требуется определить сопротивление нагрузки Rн. Графические построения для этих случаев предлагается сделать читателю самому. Во всех таких по­строениях следует руководствоваться уравнением (2.2).

Цепь с последовательно соединен­ными диодом и линейным нагрузочным резистором Rн является нелинейной. Характеристику такой цепи, называемую рабочей характеристикой диода, т. е. гра­фик зависимости i = f (Е), можно полу­чить суммированием напряжений для характеристик диода и нагрузочного резистора Rн (рисунок 2.15). Характеристика резистора Rн выражает закон Ома i = uR/Rн и является прямой линией, проходящей через начало координат.

Рисунок 2.15– Построение рабочей характеристики для цепи, состоящей из последовательно соединенных диода и резистора нагрузки

Для построения этой прямой на график наносится точка, соответствующая про­извольному напряжению uR и току uR/Rн. Через эту точку и начало коор­динат проводится прямая. В предыду­щих построениях линия нагрузки не проходила через начало координат, по­тому что она выражала зависимость тока не от напряжения uR, а от напря­жения на диоде u.

Рабочую характеристику цепи i = f (E) строим, складывая для несколь­ких значений тока i напряжения u и uR, так как Е = u + uR. Например, при токе 3мА имеем: u = 0,4 В и uR = 0,5 В. Суммируя эти напряжения, получаем Е = 0,9В и соответствующую точку результирующей характеристики. Ана­логично находим другие точки, и через них проводим плавную кри­вую.

Свойства последовательной цепи зависят главным образом от свойств участка цепи, имеющего большее сопро­тивление. Поэтому чем больше сопро­тивление Rн, тем меньше нелинейность результирующей характеристики. Сле­дует отметить, что графический расчет рабочего режима диода можно не де­лать, если Rн >>R0. В этом случае допустимо пренебречь сопротивлением диода и определять ток приближенно по формуле i » E/Rн.

Рассмотренные методы расчета по­стоянного напряжения Е можно при­менить для амплитудных или мгновен­ных значений, если анодный источник дает переменное напряжение.

Выпрямительные диоды

В выпрямительных диодах используется вентельное свойство электронно-дырочного перехода, т.е. при прямом напряжении сопротивление р-n-перехода мало, а при обратном напряжении – велико.

Широко распространены низкочастот­ные выпрямительные диоды, предназна­ченные для выпрямления переменного тока с частотой до единиц килогерц (иногда до 50 кГц). Эти диоды приме­няются в выпрямительных устройствах для питания различной аппаратуры. Иногда их называют силовыми диода­ми. Низкочастотные диоды являются плоскостными и изготовляются из гер­мания или кремния. Они делятся на диоды малой, средней и большой мощ­ности, что соответствует предельным значениям выпрямленного тока до 300 мА, от 300 мА до 10 А и выше 10 А. Все параметры диодов обычно указываются для работы при температу­ре окружающей среды 20±5°С.                                                                                                                                                                   

Германиевые диоды изготовляются, как правило, вплавлением индия в гер­маний n-типа. Они могут допускать плотность тока до 100 А/см2 при пря­мом напряжении до 0,8 В. Предельное обратное напряжение у них не превы­шает 400 В, а обратный ток обычно бывает не более десятых долей милли­ампера для диодов малой мощности и единиц миллиампер для диодов сред­ней мощности. Рабочая температура этих диодов от – 60 до + 75 оС. Если диоды работают при температуре окру­жающей среды выше 20 °С, то необхо­димо снижать обратное напряжение. При пониженном атмосферном давлении или неудовлетворительном охлаждении воз­можен перегрев диодов. Чтобы не до­пускать его, следует снижать выпрямлен­ный ток.

Мощные германиевые диоды рабо­тают с естественным охлаждением. Они изготовляются на выпрямленный ток до 1000 А и обратное напряжение до 150 В.

Выпрямительные кремниевые диоды в последнее время получили особенно большое распространение. Они изготов­ляются вплавлением алюминия в крем­ний n-типа, а также сплава олова с фос­фором или золота с сурьмой в кремний р-типа. Применяется и диффузионный метод. По сравнению с германиевыми кремниевые диоды имеют ряд преи­муществ. Предельная плотность прямого тока у них до 200 А/см2, а предельное обратное напряжение может быть до 1000 В. Рабочая температура от –60 до +125 °С (для некоторых типов даже до +150 °С). Прямое напряжение у крем­ниевых диодов доходит до 1,5 В, т. е. несколько больше, чем у германиевых диодов. Обратный ток у кремниевых диодов значительно меньше, чем у гер­маниевых.

Для выпрямления высоких напряже­ний выпускаются кремниевые столбы в прямоугольных пластмассовых корпу­сах, залитых изолирующей смолой. Они бывают рассчитаны на ток до сотен миллиампер и обратное напряжение до нескольких киловольт. Для более удоб­ной сборки различных выпрямительных схем, например мостовых или удвоительных, служат кремниевые выпрями­тельные блоки. В них имеется несколь­ко столбов, от которых сделаны отдель­ные выводы. Мощные кремниевые дио­ды выпускаются на выпрямленный ток от 10 до 500 А и обратное напряжение от 50 до 1000 В.

Выпрямительные точечные диоды широко применя­ются на высоких частотах, а некоторые . типы и на СВЧ и могут также успешно работать на низких частотах. Эти диоды используются в самых раз­личных схемах, поэтому их иногда назы­вают универсальными. Германиевые и кремниевые диоды выпускаются с пре­дельным обратным напряжением до 150 В и максимальным выпрямленным током до 100 мА.

В выпрямительных диодах применяются также и p-i-перехо­ды, использование которых позволяет снизить напряженность электрического поля в p-n-переходе и повысить значение обратного напряжения, при котором начинается пробой. Для этой же цели иногда используют р + -р- или n + -n-переходы. Для их получения методом эпитаксии на поверхности исходного полупроводника наращивают тонкую высокоомную пленку. На ней методом вплавления или диффузии создают p-n переходы, в результате чего получается структура р+-р-n или n+-n-р-гипа. В таких диодах успешно разрешаются противоречивые требова­ния, состоящие в том, что, во-первых, для получения малых обратных токов, малого падения напряжения в открытом состоянии и температурной стабильности характеристик необ­ходимо применять материал с возможно малым удельным сопротивлением; во-вторых, для получения высокого напряже­ния пробоя и малой емкости p-n-перехода необходимо приме­нять полупроводник с высоким удельным сопротивлением.

Эпитаксиальные диоды обычно имеют малое падение напряжения в открытом состоянии и высокое пробивное напряжение.

Для выпрямительных диодов характерно, что они имеют малые сопротивления в проводящем состоянии и позволяют пропускать большие токи. Барьерная емкость их из-за большой площади p-n-переходов велика и достигает значений десятков пикофарад.

На рисунке 2.14 приведена вольт-амперная характеристики германиевого (а) и кремниевого (б) выпрямительных диодов малой мощности.

Здесь показано условное графическое обозначение выпрямительного диода (в). Вершина треугольника «стрелка» показывает направление прямого тока протекающего от большого потенциала «+» к меньшему потенциалу «-» (катоду).

Рисунок 2.14 - Вольт-амперная характеристики германиевого (а) и кремниевого (б) диодов

 

Из приведенных ВАХ видно, что для кремниевых диодов по сравнению с германиевым прямые ветви характеристик, построенных при одних и тез же температурах, смещены в право. Т.е для получения одинаковых прямых токов необходимо к кремниевым диодам прикладывать большее прямое напряжение, чем к германиевым.

При увеличении температуры прямая ветвь характеристик становится более крутой. Обратный ток в кремниевых диодах меньше, чем у германиевых.

Основными параметрами выпрямительных диодов являются:

1. Максимально допустимое обратное напряжение диода Uобр max — значение напряжения, приложенного в обратном на­правлении, которое диод может выдержать в течение длитель­ного времени без нарушения его работоспособности (десятки — тысячи В).

2. Средний выпрямленный ток диода Iвп ср — среднее за период значение выпрямленного постоянного тока, протека­ющего через диод (сотни мА — десятки А).

3. Импульсный прямой ток диода Iпри— пиковое значение импульса тока при заданной максимальной длительности, скважности и формы импульса.

4. Средний обратный ток диода Ioбр ср — среднее за период значение обратного тока (доли мкА — несколько мА).

5. Среднее прямое напряжение диода при заданном среднем значении прямого тока Uпр ср (доли В).

6. Средняя рассеиваемая мощность диода Рсрд — средняя за период мощность, рассеиваемая диодом, при протекании тока в прямом и обратном направлениях (сотни мВт—десятки и более Вт).

7. Дифференциальное сопротивление диода rдиф — отношение приращения напряжения на диоде к вызвавшему его малому приращению тока (единицы — сотни Ом).

В скобках указаны значения соответствующих параметров для маломощных диодов.

Система параметров не допускает работу выпрямительных диодов области электрического пробоя. Разновидностью выпрямительных диодов, допускающих в течение длительного интервала времени работу в области электрического лавинного пробоя на обратной ветви ВАХ, являются лавинные диоды. Эта особенность лавинных диодов позволяет эффективно применять их в качестве элементов закрытых цепей аппаратуры от импульсных перегрузок по напряжению.

На рисунке 2.15 показана конструкция кремниевых диффузионных выпрямительных диодов 2Д204А,Б,В, КД204А,Б,В.

Диоды предназначены для преобразования переменного напряжения частотой до 50кГц. Выпускаются в металлостеклянном корпусе с жёсткими выводами. Тип диода и схема соединения диодов с выводами приводятся на корпусе. Масса диодов не более 6г.

На рисунке 2.16 показана конструкция кремниевых, эпитаксиально-диффузионных диодов 2Д245А, 2Д245Б,В. Диоды предназначены для преобразования переменного напряжения частотой до 200 кГц во вторичных источниках электропитания. Выпускаются в металлопластмассовом корпусе с гибкими выводами. Положительный электрод соединён с металлическим основанием корпуса. Тип диода приводится на корпусе. Масса диода не более 4г.

На рисунке 2.17 показана конструкция кремниевых, диффузионных силовых диодов Д112-10 и др. Диоды предназначены для работы в цепях статических преобразователей электроэнергии постоянного и переменного токов на частотах до 1,5 кГц. Выпускаются в металлостеклянном корпусе прямой (без знака Х) и обратной (со знаком Х) полярностей. Обозначение типа материала и полярность выводов приводятся на корпусе. Масса диода не более 6г.

 

 

Рисунок 2.15 - Конструкция кремниевых диффузионных выпрямительных диодов 2Д204А,Б,В, КД204А,Б,В

 

Рисунок 2.16 - Конструкция кремниевых, эпитаксиально-диффузионных диодов 2Д245А,Б,В

 

 

Рисунок 2.17 - Конструкция кремниевых, диффузионных силовых диодов Д112-10 и др.

 

Импульсные диоды

 

Во многих современных радиоэлектронных устройствах полупровод-никовые диоды часто работают в импульсном режиме (импульсных цепях) при длительности импульсов, равной единицам или долям микросекунды. От выпрямительных диодов они отличаются малыми емкостями p-n переходов (доли микроварад). Рассмотрим особенности этого режима на примере, когда диод соединен последовательно с нагрузкой, сопротивление которой Rн во много раз больше прямого сопротивления диода (Rн» Rпр ) (рисунок 2.28). Пусть такая цепь находится под действием импульсного напряжения, которое состоит из короткого импульса прямого напряжения (положительного импульса), отпирающего диод, и более длительного импульса обратного напряжения (отрицательного импульса), надежно запирающего диод до прихода следующего положительного импульса. Импульсы напряжения имеют прямоугольную форму (рисунок 2.28, а).

График тока, а следовательно, и пропорционального ему напряжения на показан для этого случая на рисунке 2.28, б. При прямом напряжении ток в цепи определяется сопротивлением Rн. Хотя прямое сопротивление диода нелинейно, но оно почти не влияет на ток, так как во много раз меньше Rн. Поэтому импульсы прямого тока почти не искажены. Некоторые сравнительно небольшие искажения могут наблюдаться только при очень коротких (длитель­ностью в доли микросекунды) импульсах.

При перемене полярности напряжения, т. е. при подаче обратного напряжения, диод запирается не сразу, а в течение некоторого времени проходит им­пульс обратного тока (рисунок 2.28, б), значительно превосходящий по амплитуде обратный ток в установившемся режиме iобр. уст.

 
Рисунок 2.28 - Импульсный режим работы диода

Главная причина это разряд диффузионной емкости, т. е. рассасывание зарядов, образованных подвижными носителями в n- и р-областях. Поскольку концентрации примесей в этих областях обычно, весьма различны, то практически импульс обратного тока создается рассасыванием заряда, накопленного в базе, т. е. в области с относительно малой проводимостью. Например, если n-область является эмиттером, а р-область - базой, то при прямом токе можно пренебречь потоком дырок из р-области в n-область и рассматривать только поток электронов из n-области в р-область.

Этот диффузионный поток через переход вызывает накопление электронов в р-области, так как они не могут сразу рекомбинировать с дырками

или дойти до вывода от р-области. При перемене полярности напряжения накопленный в базе заряд начинает двигаться в обратном направлении и возникает импульс обратного тока. Чем больше был прямой ток, тем больше электронов накапливалось в базе и тем сильнее импульс обратного тока. Двигаясь от базы обратно в эмиттер, электроны частично рекомбинируют с дырками, а частично проходят через n-область до металлического вывода от этой области.

Исчезновение (рассасывание) заряда, накопленного в базе, длится некоторое время. К концу рассасывания обратный ток достигает своего установившегося, весьма малого, значения iобр уст. Иначе можно сказать, что обратное сопротивление диода Rобр сначала оказывается сравнительно небольшим, а затем постепенно возрастает до своего нормального установившегося значения.

Время τвос от момента возникновения обратного тока до момента, когда он принимает установившееся значение, называют временем восстановления обратного сопротивления. Это время - важный параметр диодов, предназначенных для импульсной работы. У таких диодов τвос не превышает десятых долей микросекунды. Чем оно меньше, тем лучше: тогда диод быстрее запирается.

Вторая причина возникновения импульса обратного тока - заряд барьерной емкости диода под действием обратного напряжения. Зарядный ток этой емкости складывается с током рассасывания заряда, и в результате получается суммарный импульс обратного тока, который тем больше, чем больше емкость диода. Эта емкость у специальных диодов для импульсной работы не превышает единиц пикофарад.

Если импульс прямого тока имеет длительность значительно большую, чем длительность рассмотренных переходных процессов, то импульс обратного тока получается во много раз более коротким (рисунок 2.28, в) и его можно не принимать во внимание.

Уменьшение емкостей достигается за счёт уменьшения площадей p-n переходов. Для уменьшения τвос диоды изготавливают так, чтобы ёмкость перехода была малой и рекомбинация носителей происходила как можно быстрее. Допускаются мощности рассеяния у них невелики (30-40 мВт).

По способу создания р-n переходов импульсные диоды подразделяются на точечные, сплавные, меза- и планарно-диффузионные [7].

В быстродействующих импульсных цепях широко используются диоды Шотки. У этих диодов не затрачивается время на накопление и рассасывание зарядов в базе. ВАХ диодов Шотки напоминает характеристику диодов на основе p-n переходов. Отличие состоит в том, что прямая ветвь в пределах 8-10 декад приложенного напряжения (декада – изменение значения в 10 раз) представляет почти идеальную экспонициальную кривую, а обратные токи малы (доли-десятки нА[1]).

Большинство конструкций импульсных диодов имеет металлостеклянный или стеклянный корпус.

На рисунке 2.29 показана конструкция германиевых импульсных микросплавных диодов 1Д508А, ГД508А, ГД508Б, предназначенных для применения в сверхбыстрых действующих формирователях импульсов. Выпускаются диоды в стеклянном корпусе. Масса диода не более 0,2 г.

 

 

Рисунок 2.29 - Конструкция германиевых импульсных микросплавных диодов 1Д508А, ГД508А, ГД508Б

 

На рисунке 2.30 показана конструкция кремниевого диффузионного импульсного диода КД805А, предназначенного для применения в импульсных схемах. Выпускаются диоды в металлическом корпусе с гибкими выводами. Диод обозначается на корпусе продольной полосой красного цвта. Масса диода не более 0,15 г.

 

Рисунок 2.30 - Конструкция кремниевого диффузионного импульсного диода КД805А

Импульсные диоды обладают следующими основными параметрами:

1. Общая ёмкость диода Сд (доли nФ – несколько пФ)

2. Максимальная импульсное прямое напряжение Uпр и max (единицы В)

3. Максимально допустимый импульсный ток Iпр и max (сотни mA)

4. Время установления прямого напряжения tуст – время от момента подачи импульса прямого тока до достижения заданного значения прямого напряжения на нём (доли нс – доли мкс). Это время Зависит от скорости движения внутрь базы инпретированных через переход неосновных носителей, в результате которого наблюдается уменьшене её сопротивления.

5. Время восстановления обратного сопротивления диода tвост вост.)

Изготовление р-n-переходов методом диффузии примесей значительно улучшает параметр tвост.


Стабилитроны

Как было показано в пункте 1.3.5 вольт-амперная характеристика полупроводниковых диодов в области электрического пробоя имеет участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, т. е. в режиме стабилизации, он становится такого же порядка, как и прямой ток. В настоящее время выпускаются исключительно кремниевые стабилитроны многих типов. Их также называют опорными диодами, так как получаемое от них стабильное напряжение в ряде случаев используется в качестве эталонного. На рисунке 2.31 дана типичная вольт-амперная характе­ристика стабилитрона при обратном токе, показывающая, что в режиме ста­билизации напряжение меняется мало. Характеристика для прямого тока стабилитрона такая же, как у обычных диодов.

 

 

Рисунок 2.31 - Вольтамперная характе­ристика стабилитрона при обратном токе

Кремниевые стабилитроны могут быть изготовлены на малые' напряжения (единицы вольт), а именно такие нужны для питания многих транзисторных устройств.

Напряже­ние стабилизации Uст может быть примерно от 3 до 200 В. изменение тока стабилитрона от Imin до Imax составляет десятки и даже сотни миллиампер. Максимальная допустимая мощность Рmах, рассеиваемая в стабилитроне, от сотен милливатт до единиц ватт. Дифференциальное сопротивление Rд = Δu/Δi в режиме стабилизации может быть от десятых долей Ома для низковольтных мощных стабилитронов до 200 Ом для стабилитронов на более высокие напря­жения. Низковольтные стабилитроны небольшой мощности имеют сопротивле­ние Rд от единиц до десятков Ом. Чем меньше Rд, тем лучше стабилизация. При идеальной стабилизации было бы Rд = 0. Так как Rд является сопротивлением переменному току, то его не следует путать со статическим сопротивлением, т. е. сопротивлением постоянному току R0 = и/ i . Сопротивление Rо всегда во много раз больше Rд.Влияние температуры оценивается температурным коэффициентом напряжения стабилизации ТКН, который характеризует изменение напряжения и„ при изменении температуры на один градус, т. е.

 

ТКН=ΔUст/(UстΔT) .                                            (2.10)

 

Температурный коэффициент напряжения может быть от 10-5 до 10-3 К-1. Значение Uст и знак ТКН зависят от удельного сопротивления основного по­лупроводника. Стабилитроны на напряжения до 7 В изготовляются из кремния с малым удельным сопротивлением, т. е. с большой концентрацией примесей. В этих стабилитронах п - р-переход имеет малую толщину, в нем действует поле с высокой напряженностью и пробой происходит главным образом за счет туннельного эффекта. При этом ТКН получается отрицательным. Если же применен кремний с меньшей концентрацией примесей, то n-р-переход будет толще. Его пробой возникает при более высоких напряжениях и является лавинным. Для таких стабилитронов характерен положительный ТКН.

Простейшая схема применения стабилитрона показана на рисунке 2.32. Нагрузка (потребитель) включена параллельно стабилитрону. Поэтому в режиме стабилизации, когда напряжение на стабилитроне почти постоянно, такое же напряжение будет и на нагрузке. Все изменения напряжения источника Е при его нестабильности почти полностью поглощаются ограничительным резистором Rогр.

 

Рисунок 2.32 - Схема включения стабилитрона

Наиболее часто стабилитрон работает в таком режиме, когда напряже­ние источника нестабильно, а сопротивление нагрузки Rн постоянно. Для уста­новления и поддержания правильного режима стабилизации в этом случае сопротивление Rогр должно иметь определенное значение. Обычно Rогр рас­считывают для средней точки Т характеристики стабилитрона. Если напряже­ние Е меняется от Еmin до Еmax, то можно Rогр найти по следующей формуле:

 

                              Rогр = (Еср – Uст)/(Iср + IН) ,                                   (2.11)

 

где Еср = 0,5 (Еmin - Еmax) - среднее напряжение источника; Iср = 0,5 (Imin + Imax) - средний ток стабилитрона; Iн = Uст / Rн - ток нагрузки.

Если напряжение Е станет изменяться в ту или другую сторону, то будет изменяться ток стабилитрона, но напряжение на нем, а следовательно, и на нагрузке будет почти постоянным.

                 

 

Поскольку все изменения напряжения источника должны поглощаться ограничительным резистором, то наибольшее изменение этого напряжения, равное Еmax - Еmin, должно соответствовать наибольшему возможному изменению тока, при котором ещё сохраняется стабилизация, т. е. Imax - Imin. Отсюда следует, что если значение Е изменяется на ΔЕ, то стабилизация будет осуществляться только при соблюдении условия

 

ΔЕ≤( Imax - Imin) Rогр .                                                         (2.12)

 

Стабилизация в более широком диапазоне изменения Е возможна при увеличении Rогр. Но из формулы (2.12) следует, что большее Rогр получается при меньшем Iн, т. е. при большем Rн. Повышение Еср также дает увеличение Rогр.

Иногда необходимо получить стабильное напряжение более низкое, чем дает стабилитрон. Тогда последовательно с нагрузкой включают добавочный резистор, сопротивление которого легко рассчитать по закону Ома (рисунок 2.33).

Рисунок 2.33 - Включение добавочного резистора для понижения стабильного напряжения на нагрузке

Второй возможный режим стабилизации применяется в том случае, когда Е= const, а Rн изменяется в пределах от Rн min до Rн max. Для такого режима Rогр можно определить по средним значениям токов по формуле

 

                         Rогр=(E-Uст)/(Iср+ Iн ср) ,                                          (2.13)

где Iн ср=0,5 (I н min - I н max), при чём I н min=Uст/ Rн max и I н max= Uст/ Rн min.

 

Работу схемы в данном режиме можно объяснить так. Поскольку Rогр постоянно и падение напряжения на нем, равное Е - Uст, также постоянно, то и ток в Rогр, равный Iср+ Iн ср должен быть постоянным. Но последнее возможно только в том случае, если ток стабилитрона I и ток Iн изменяются в одинаковой степени, но в противоположные стороны. Например, если Iн увеличивается, то ток I на столько же уменьшается, а их сумма остается неизменной.

Для получения более высоких стабильных напряжений применяется последовательное соединение стабилитронов, рассчитанных на одинаковые токи (рисунок 2.34). Вследствие разброса характеристик и параметров у отдельных экземпляров стабилитронов данного типа их параллельное соединение с целью получения больших токов не рекомендуется. Оно допускается только при условии, что суммарная мощность, рассеиваемая на всех стабилитронах, не превышает предельной мощности одного стабилитрона.

 

 

Рисунок 2.34 - Последовательное включение стабилитронов

 

Для повышения стабильности напряжения может применяться схема каскадного соединения стабилитронов (рисунок 2.35) в которой стабилитрон VD1 должен иметь более высокое напряжение Uст, нежели стабилитрон VD2.

 

Рисунок 2.35 - Каскадное включение стабилитронов

Эффективность стабилизации напряжения характеризуется коэффициентом стабилизации кст, который показывает, во сколько раз относительное изменение напряжения на выходе схемы стабилизации меньше, чем относительное изменение напряжения на входе. Для простейшей схемы по рисунку 2.32 можно написать

 

 .                                         (2.14)

 

Практически полупроводниковый стабилитрон может обеспечить кст,
равный нескольким десяткам. А при каскадном соединении (рисунок 2.35) общий коэффициент стабилизации равен произведению коэффициентов стабилизации отдельных звеньев (ячеек):

 

кст = кст1 кст2…                                                                (2.15)

 

и уже при двух звеньях достигает нескольких сотен.

Недостаток рассматриваемых схем стабилизации состоит в том, что потери мощности в самом стабилитроне и на Rогр велики, особенно в схеме каскадного соединения.

Следует еще отметить, что если имеют место пульсации напряжения Е, то стабилитрон значительно сглаживает их. Это объясняется тем, что стабили­трон обладает малым сопротивлением переменному току. Оно обычно во много раз меньше Rогр. Поэтому большая часть напряжения пульсаций поглощается в Rогр, а на стабилитроне и на нагрузке будет лишь малая часть этого напряжения.

Конструкция стабилитронов очень незначительно отличается от конструкций выпрямительных диодов.

 


Стабисторы

Это полупроводниковые диоды, предназначенные для работы в стабилизаторах напряжения, причем в отличие от стабилитронов у стабисторов используется не обратное напряже­ние, а прямое. Значение этого напря­жения мало зависит от тока в некото­рых его пределах. Как правило, стабисторы изготовляются из кремния и имеют напряжение стабилизации в среднем около 0,7 В. Ток стабисторов обычно может быть от 1 мА до нескольких десятков миллиампер. Для получения стабильного напряжения в единицы вольт соединяют последовательно не­сколько стабисторов. Особенность ста­бисторов – отрицательный температур­ный коэффициент напряжения, т. е. на­пряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их последовательно с обычными стабилитронами, имеющими положи­тельный температурный коэффициент напряжения.

 

Варикапы

Эти плоскостные диоды, иначе называемые параметрическими, работают при обратном напряжении, от которого зависит барьерная емкость. Таким образом, варикапы представляют собой конденсаторы переменной емко­сти, управляемые не механически, а электрически, т. е. изменением обратного напряжения.

Варикапы применяются главным образом для настройки колебательных контуров, а также в некоторых специ­альных схемах, например в так назы­ваемых параметрических усилителях. На рисунке 2.36 показана простейшая схема включения варикапа в колебательный контур. Изменяя с помощью потенцио­метра R обратное напряжение на варикапе, можно изменять резонансную час­тоту контура. Добавочный резистор R1 с большим сопротивлением включен для того, чтобы добротность контура не снижалась заметно от шунтирующего влияния потенциометра R. Конденсатор Ср является разделительным. Без него варикап был бы для постоянного напря­жения замкнут накоротко катушкой L.

 

Рисунок 2.36 – Схема включения варикапа в колебательный контур в качестве конденсатора переменной емкости

 

В качестве варикапов довольно ус­пешно можно использовать кремниевые стабилитроны при напряжении ниже UСТ, когда обратный ток еще очень мал и, следовательно, обратное сопротивление очень велико.

Туннельные диоды

Предложенный в 1958 г. японским ученым Л. Ёсаки туннельный диод из­готовляется из германия или арсенида галлия с высокой концентрацией приме­сей (1019 —1020 см-3), т.е. с очень ма­лым удельным сопротивлением, в сотни или тысячи раз меньшим, чем в обыч­ных диодах. Такие полупроводники с ма­лым сопротивлением называют вырож­денными. Электронно-дырочный переход в вырожденном полупроводнике полу­чается в десятки раз тоньше (10-6 см), чем в обычных диодах, а потенциальный барьер примерно в два раза выше. В обычных полупроводниковых диодах высота потенциального барьера равна примерно половине ширины запрещен­ной зоны, а в туннельных диодах она несколько больше этой ширины. Вслед­ствие малой толщины перехода напря­женность поля в нем даже при отсутствии внешнего напряжения достигает 10б В/см.

В туннельном диоде, как и в обыч­ном, происходит диффузионное переме­щение носителей через электронно-ды­рочный переход и обратный их дрейф под действием поля. Но кроме этих процессов основную роль играет тун­нельный эффект. Он состоит в том, что согласно законам квантовой физики при достаточно малой высоте потенци­ального барьера возможно проникно­вение электронов через барьер без изме­нения их энергии. Такой туннельный переход электронов с энергией, меньшей высоты потенциального барьера (в элект­рон-вольтах), совершается в обоих на­правлениях, но только при условии, что по другую сторону барьера для туннелирующих электронов имеются свобод­ные уровни энергии. Подобный эффект невозможен с точки зрения классической физики (в которой электрон рассматри­вается как частица материи с отрицатель­ным зарядом), но оказывается вполне ре­альным в явлениях микромира, подчи­няющихся законам квантовой механики, согласно которым электрон имеет двой­ственную природу: с одной стороны, он является частицей, а с другой стороны, он может проявлять себя как электро­магнитная волна. Но электромагнитная волна может проходить через потенци­альный барьер, т. е. через область элект­рического поля, не взаимодействуя с этим полем.

Процессы в туннельном диоде удоб­но рассматривать на энергетических диаграммах, показывающих уровни энергии валентной зоны и зоны прово­димости в n- и р-областях. Вследствие возникновения контактной разности по­тенциалов в n-р-переходе границы всех зон в одной из областей сдвинуты относительно соответствующих зон дру­гой области на высоту потенциального барьера, выраженную в электрон-воль­тах.

На рисунке 2.37 с помощью энергети­ческих диаграмм изображено возникно­вение туннельных токов в электронно-дырочном переходе туннельного диода. Для того чтобы не усложнять рассмот­рение туннельного эффекта, диффузионный ток и ток проводимости на этом рисунке не показаны. Диаграмма на рисунке 2.37, а соответствует отсутствию внешнего напряжения. Высота потен­циального барьера взята для примера 0,8 эВ, а ширина запрещенной зоны составляет 0,6 эВ. Горизонтальными линиями в зоне проводимости и в ва­лентной зоне показаны энергетические уровни, полностью или частично заня­тые электронами. В валентной зоне и зоне проводимости изображены также не заштрихованные горизонтальными линиями участки, которые соответству­ют уровням энергии, не занятым элект­ронами. Как видно, в зоне проводимости полупроводника n-типа и в валентной зоне полупроводника р-типа имеются занятые электронами уровни, которым соответствуют одинаковые энергии. По­этому возможен туннельный переход электронов из области n в область р (прямой туннельный ток iпр) и из области р в область n (обратный туннельный ток io6p). Эти два тока одинаковы по значению, и результирующий ток равен нулю.

 

 

Рисунок 2.37 – Энергетические диаграммы p-n-перехода в туннельном диоде при различном приложенном напряжении

 

На рисунке 2.37, б показана диаграмма при прямом напряжении 0,1 В, за счет которого потенциальный барьер пони­зился на 0,1 эВ и составляет 0,7 эВ. В этом случае туннельный переход элект­ронов из области n в область р уси­ливается, так как в области р имеются в валентной зоне свободные уровни с такими же энергиями, как энергии уров­ней, занятых электронами в зоне прово­димости области n. А переход электро­нов из валентной зоны области р в об­ласть n невозможен, так как уровни, занятые электронами в валентной зоне области р, соответствуют в области n энергетическим уровням запрещенной зоны. Обратный туннельный ток от­сутствует, и результирующий ток дости­гает максимума. В промежуточных слу­чаях, например когда uпр = 0,05 В, су­ществует и прямой и обратный туннель­ный ток, но обратный ток меньше пря­мого. Результирующим будет прямой ток, но он меньше максимального, по­лучающегося при uпр = 0,1 В.

Случай, показанный на рисунке 2.37, в, соответствует uпр = 0,2 В, когда высота потенциального барьера стала 0,6 эВ. При этом напряжении туннельный пере­ход невозможен, так как уровням, за­нятым электронами в данной области, соответствуют в другой области энерге­тические уровни, находящиеся в запре­щенной зоне. Туннельный ток равен нулю. Он отсутствует также и при боль­шем прямом напряжении.

Следует помнить, что при возраста­нии прямого напряжения увеличивается прямой диффузионный ток диода. При рассмотренных значениях uпр < 0,2 В диффузионный ток гораздо меньше тун­нельного тока, а при uпр > 0,2 В диф­фузионный ток возрастает и достигает значений, характерных для прямого то­ка обычного диода.

На рисунке 2.37, г рассмотрен случай, когда обратное напряжение uобр = 0,2 В. Высота потенциального барьера стала 1 эВ, и значительно увеличилось число уровней, занятых электронами в валентной зоне р-области и соответствующих свободным уровням в зоне проводимо­сти n-области. Поэтому резко возраста­ет обратный туннельный ток, который получается такого же порядка, как и ток при прямом напряжении.

Вольтамперная характеристика тун­нельного диода (рисунок 2.38) поясняет рассмотренные диаграммы. Как видно, при u = 0 ток равен нулю. Увеличение прямого напряжения до 0,1 В дает воз­растание прямого туннельного тока до максимума (точка А). Дальнейшее уве­личение прямого напряжения до 0,2 В сопровождается уменьшением туннель­ного тока. Поэтому в точке Б полу­чается минимум тока и характеристика имеет падающий участок АБ, для кото­рого характерно отрицательное сопро­тивление переменному току

 

Ri = Du/Di < 0.                                                (2.16)

 

После этого участка ток снова воз­растает за счет диффузионного прямого тока, характеристика которого на рисунке 2.38 показана штриховой линией. Обратный ток получается такой же, как прямой, т. е. во много раз больше, не­жели у обычных диодов.

 

Рисунок 2.38 – Вольтамперная характеристика туннельного диода

 

Основные параметры туннельных диодов – ток максимума Iтах, ток ми­нимума Imin (часто указывается отноше­ние Imax/Imin, которое бывает равно нескольким единицам), напряжение мак­симума U1 напряжение минимума U2, наибольшее напряжение U3, соответ­ствующее току Iтах на втором восхо­дящем участке характеристики (участок БВ). Разность DU = U3 – U1 называется напряжением переключения или напря­жением скачка. Токи в современных туннельных диодах составляют единицы миллиампер, напряжения — десятые до­ли вольта. К параметрам также отно­сится отрицательное дифференциальное сопротивление диода (обычно несколько десятков Ом), общая емкость диода (единицы или десятки пикофарад), время переключения (доли наносекунды) и мак­симальная, или критическая, частота (сотни гигагерц).

Включая туннельный диод в различ­ные схемы, можно его отрицательным сопротивлением компенсировать поло­жительное активное сопротивление (если рабочая точка будет находиться на участке АБ) и получать режим усиления или генерации колебаний. Например, в обычном колебательном контуре за счет потерь всегда имеется затухание. Но с помощью отрицательного сопротивле­ния туннельного диода можно уничто­жить потери в контуре и получить в нем незатухающие колебания. Простей­шая схема генератора колебаний с тун­нельным диодом показана на рисунке 2.39.

 

 

Рисунок 2.39 – Простейшая схема включения туннельного диода для генерации колебаний

 

Работу такого генератора можно объяснить следующим образом. При включении питания в контуре LC воз­никают свободные колебания. Без тун­нельного диода они затухли бы. Пусть напряжение Е выбрано таким, чтобы диод работал на падающем участке характеристики, и пусть во время одного полупериода переменное напряжение контура имеет полярность, показанную на рисунке знаками « + » и «–» без кружков (знаки « + » и «–» в кружках относятся к постоянным напряжениям). Напряжение от контура подается на диод и является для него обратным. Поэтому прямое напряжение на диоде уменьшается. Но за счет работы диода на падающем участке характеристики ток возрастает, т. е. пройдет дополни­тельный импульс тока, который добавит энергию в контур. Если эта дополни­тельная энергия достаточна для компен­сации потерь, то колебания в контуре станут незатухающими.

Туннельный переход электронов че­рез потенциальный барьер происходит в чрезвычайно малые промежутки вре­мени: 10-12-10-14с, или 10-3-10-5нс. Поэтому туннельные диоды хорошо ра­ботают на сверхвысоких частотах. На­пример, можно генерировать и усили­вать колебания с частотой до десятков и даже сотен гигагерц. Следует заме­тить, что частотный предел работы тун­нельных диодов практически определя­ется не инерционностью туннельного эффекта, а емкостью самого диода, индуктивностью его выводов и его активным сопротивлением.

Принцип усиления с туннельным ди­одом показан на рисунке 2. 40. Для полу­чения режима усиления необходимо иметь строго определенные значения Е и Rн. Сопротивление RH должно быть немного меньше абсолютного значения отрицательного сопротивления диода. Тогда при отсутствии входного напря­жения исходная рабочая точка Т может быть установлена на середине падаю­щего участка (эта точка является пере­сечением линии нагрузки с характеристи­кой диода). При подаче входного на­пряжения с амплитудой Um вх линия нагрузки будет «совершать колебания», перемещаясь параллельно самой себе.


Рисунок 2.40 – Простейшая схема усилителя с туннельным диодом (а) и график, поясняющий процесс усиления (б)

 

Крайние ее положения показаны штри­ховыми линиями. Они определяют ко­нечные точки рабочего участка АБ. Проектируя эти точки на ось напряже­ний, получаем амплитуду выходного напряжения Um вых, которая оказывается значительно больше амплитуды вход­ного. Особенность усилителя на тун­нельном диоде – отсутствие отдельной входной и отдельной выходной цепи, что создает некоторые трудности при осуществлении схем с несколькими кас­кадами усиления. Усилители на тун­нельных диодах могут давать значитель­ное усиление при невысоком уровне шумов и работают устойчиво.

Туннельный диод используется так­же в качестве быстродействующего переключателя, причем время переклю­чения может быть около 10–9 с, т.е. около 1 нс, и даже меньше. Схема ра­боты туннельного диода в импульсном режиме в общем случае такая же, как на рисунке 2.40, но только входное напря­жение представляет собой импульсы, а сопротивление RH должно быть не­сколько больше абсолютного значения отрицательного сопротивления диода. На рисунке 2.41 показана диаграмма ра­боты туннельного диода в импульсном режиме. Напряжение питания Е выбрано таким, что при отсутствии входного импульса диод работает в точке А и ток получается максимальным (Imах), т. е. диод открыт. При подаче положитель­ного импульса входного напряжения прямое напряжение на диоде увеличи­вается и режим работы диода скачком переходит в точку Б. Ток уменьшается до минимального значения Imin, что ус­ловно можно считать закрытым состоянием диода. А если установить посто­янное напряжение Е, соответствующее точке Б, то можно переводить диод в точку А подачей импульсов напряже­ния отрицательной полярности.

 

Рисунок 2.41 – Работа туннельного диода в импульсном режиме

 

Туннельные диоды могут приме­няться в технике СВЧ, а также во многих импульсных радиоэлектронных устройствах, рассчитанных на высокое быстродействие. Помимо весьма малой инерционности достоинством туннель­ных диодов является их стойкость к ионизирующему излучению, а также ма­лое потребление энергии от источника питания. К сожалению, эксплуатация туннельных диодов выявила существен­ный их недостаток. Он заключается в том, что эти диоды подвержены зна­чительному старению, т. е. с течением времени их характеристики и параметры заметно изменяются, что может приве­сти к нарушению нормальной работы того или иного устройства. Надо пола­гать, что в дальнейшем этот недостаток удастся свести к минимуму.

Если для диода применить полупро­водник с концентрацией примеси около 1018 см–3, то при прямом напряжении туннельный ток практически отсутствует и в вольт-амперной характеристике нет падающего участка (рисунок 2.42). Зато при обратном напряжении туннельный ток по-прежнему значителен, и поэтому та­кой диод хорошо пропускает ток в об­ратном направлении. Подобные диоды, получившие название обращенных, могут работать в качестве детекторов на более высоких частотах, нежели обычные диоды.

 

Рисунок 2.42 – Вольтамперная характеристика и условное графическое обозначение обращенного диода

 

Все туннельные диоды имеют весьма малые размеры. Например, они могут быть оформлены в цилиндрических гер­метичных металлостеклянных корпусах диаметром 3 – 4 мм и высотой около 2 мм. Выводы у них гибкие ленточные. Масса не превышает 0,15 г.

В настоящее время разрабатываются новые типы туннельных диодов, иссле­дуются новые полупроводниковые мате­риалы для них и проблемы замедления старения.

Полупроводниковые диоды

Классификация и система обозначений полупроводниковых диодов.

Полупроводниковым диодом называется полупроводниковый прибор, как правило, с одним электронно-дырочным переходом и двумя выводами.

Полупроводниковые диоды подраз­деляются на группы по многим при­знакам. Бывают диоды из различных полупроводниковых материалов, пред­назначенные для низких или высоких частот, для выполнения различных функций и отличающиеся друг от друга по конструкции.

Система обозначений современных полупроводниковых

диодов, варикапов и оптоэлектронных приборов установлена отраслевым стандартом ОСТ 11.336.919-81 и базируется на ряде классификационных признаков этих приборов.

В основу системы обозначений положен буквенно-цифровой код.

Первый элемент обозначает исходный полупроводнико­вый материал, на основе которого изготовлен прибор.

Для обозначения исходного материала используются сле­дующие символы:

Г и 1 — для германия или его соединений;

К и 2 — для кремния или его соединений;

А и 3 — для соединения галлия (например, для арсенида галлия);

И и 4 — для соединения индия (например, для фосфида индия).

Второй элемент обозначения — буква, определяющая подкласс (или группу) приборов.

Для обозначения подклассов приборов используется одна из следующих букв:

Д — диодов выпрямительных и импульсных;

Ц — выпрямительных столбов и блоков;

В — варикапов;

И — туннельных диодов;

А — сверхвысокочастотных диодов;

С — стабилитронов;

Г — генераторов шума;

Л — излучающих оптоэлектронных приборов;

О — оптопар;

Н — диодных тиристоров;

У — триодных тиристоров.

Третий элемент обозначения — цифра, определяющая основные функциональные возможности прибора.

Для обозначения наиболее характерных эксплуатационных признаков приборов (их функциональных возможностей) ис­пользуются следующие цифры применительно к различным подклассам приборов.

Диоды (подкласс Д):

1 — для выпрямительных диодов с постоянным или сред­ним значением прямого тока не более 0,3 А;

2 — для выпрямительных диодов с постоянным или сред­ним значением прямого тока более 0,3 А, но не свыше 10 А;

3— диодные преобразователи (магнитодиоды, термодиоды и др.);

4 — для импульсных диодов с временем восстановления обратного сопротивления более 500 нс;

5 — для импульсных диодов с временем восстановления более 150 нс, но не свыше 500 нс;

6 — для импульсных диодов с временем восстановления 30... 150 нс;

7 — для импульсных диодов с временем восстановления 5...30 нс;

8 — для импульсных диодов с временем восстановления 1...5 нс;

9 — для импульсных диодов с эффективным временем жизни неосновных носителей заряда менее 1 нс.

Выпрямительные столбы и блоки (подкласс Ц):

1 — для столбов с постоянным или средним значением прямого тока не более 0,3 А;

2 — для столбов с постоянным или средним значением прямого тока не более 0,3...10 А;

3 — для блоков с постоянным прямого тока не более 0,3 А;

4 — для блоков с постоянным прямого тока не более 0,3... 10 А.

Варикапы (подкласс В):

1 — для подстроенных варикапов;

2 — для умножительных варикапов.

Туннельные диоды (подкласс И):

1 — для усилительных туннельных диодов;

2 — для генераторных туннельных диодов;

3 — для переключательных туннельных диодов;

4 — для обращенных диодов.

Сверхвысокочастотные диоды (подкласс А):

1 — для смесительных диодов;

2 — для детекторных диодов;

3 — для усилительных диодов;

4 — для параметрических диодов;

5 — для переключательных и ограничительных диодов;

6 — для умножительных и настроечных диодов;

7 — для генераторных диодов;

8 — для импульсных диодов.

Стабилитроны (подкласс С):

1 — для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации менее 10 В;

2 — для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации 10...100 В;

3 — для стабилитронов мощностью не более 0,3 Вт с номинальным напряжением стабилизации более 100 В;

4 — для стабилитронов мощностью 0,3...5 Вт с номиналь­ным напряжением стабилизации менее 10 В;

5 — для стабилитронов мощностью 0,3...5 Вт с номиналь­ным напряжением стабилизации 10...100 В;

6 — для стабилитронов мощностью 0.3...5 Вт с номиналь­ным напряжением стабилизации более 100 В;

7 — для стабилитронов мощностью 5...10 Вт с номиналь­ным напряжением стабилизации менее 10 В;

8 — для стабилитронов мощностью 5... 10 Вт с номиналь­ным напряжением стабилизации 10...100 В;

9 — для стабилитронов мощностью 5...10 Вт с номиналь­ным напряжением стабилизации более 100 В.

Генераторы шума (подкласс Г):

1 — для низкочастотных генераторов шума;

2 — для высокочастотных генераторов шума.

Излучающие оптоэлектронные приборы (подкласс Л):

источники инфракрасного излучения:

1 — для излучающих диодов;

2 — для излучающих модулей;

приборы визуального представления информации:

3 — для светоизлучающих диодов;

4 — для знаковых индикаторов;

5 — для знаковых табло;

6 — для шкал;

7 — для экранов.

Оптопары (подкласс О):

Р — для резисторных оптопар;

Д — для диодных оптопар;

У — для тиристорных оптопар;

Т — для транзисторных оптопар.

Четвертый элемент — число, обозначающее порядко­вый номер разработки технологического типа. Для обозначе­ния порядкового номера разработки используется двухзнач­ное число от 01 до 99. Если порядковый номер разработки превысит число 99, то в дальнейшем используют трехзначное число от 101 до 999.

Пятый элемент — буква, условно определяющая класси­фикацию (разбраковку по параметрам) приборов, изготовлен­ных по единой технологии. В качестве классификационной литеры используют буквы русского алфавита (за исключением букв 3, О, Ч, Ы, Ш, Щ, Ю, Я, Ь, Ъ, Э).

8 качестве дополнительных элементов обозначения ис­пользуют следующие символы:

цифры 1—9 для обозначения модификаций прибора, при­водящих к изменению его конструкции или электрических па­раметров;

букву С для обозначения сборок — наборов в общем корпусе однотипных приборов, не соединенных или соединен­ных одноименными выводами;

цифры, написанные через дефис для обозначений следую­щих модификаций конструктивного исполнения бескорпусных приборов:

1 — с гибкими выводами без кристаллодержателя;

2 — с гибкими выводами на кристаллодержателе (под­ложке);

3 — с жесткими выводами без кристаллодержателя (под­ложки);

4 — с жесткими выводами на кристаллодержателе (под­ложке);

5 — с контактными площадками без кристаллодержателя (подложки) и без выводов;

6 — с контактными площадками на кристаллодержателе без выводов, буква Р — после последнего элемента обозначе­ния для приборов с парным подбором, буква Г — с подбором в четверки, буква К — с подбором в шестерки.

Таким образом, современная система обозначений вмеща­ет значительный объем информации о свойствах прибора.

Примеры обозначений приборов:

2Д921А — кремниевый импульсный диод с эффективным временем жизни неосновных носителей заряда менее 1 нс, номер разработки 21,

группа А;

ЗИ203Г — арсенидогаллиевый туннельный генераторный диод, номер разработки 3, группа Г;

АЛ103Б — арсенидогаллиевый излучающий диод инфра­красного диапазона, номер разработки 3, группа Б.

Поскольку ОСТ 11 336.919-81 введен в действие в 1982 г., для ранее разработанных приборов использована иная систе­ма обозначений. Условные обозначения приборов, разрабо­танных до 1964 г., состоят их двух или трех элементов.

Первый элемент обозначения — буква Д, характеризую­щая весь класс полупроводниковых диодов.

Второй элемент обозначения — число (номер), которое указывает на область применения:

от 1 до 100 — для точечных германиевых диодов;

от 101 до 200 — для точечных кремниевых диодов;

от 201 до 300 — для плоскостных кремниевых диодов;

от 301 до 400 — для плоскостных германиевых диодов;

от 401 до 500 — для смесительных СВЧ детекторов;

от 501 до 600 — для умножительных диодов;

от 601 до 700 — для видеодетекторов;

от 701 до 749 — для параметрических германиевых ди­одов;

от 750 до 800 — для параметрических кремниевых ди­одов;

от 801 до 900 — для стабилитронов;

от 901 до 950 — для варикапов;

до 951 до 1000 — для туннельных диодов;

от 1001 до 1100 — для выпрямительных столбов.

Третий элемент обозначения — буква, указывающая на разновидность групп однотипных приборов.


Поделиться:



Последнее изменение этой страницы: 2019-03-31; Просмотров: 379; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.295 с.)
Главная | Случайная страница | Обратная связь