Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Последовательное и параллельное соединение выпрямительных диодов
При выпрямлении более высоких напряжений приходится соединять диоды последовательно, с тем, чтобы обратное напряжение на каждом диоде не превышало предельного. Но вследствие разброса обратных сопротивлений у различных экземпляров диодов одного и того же типа на отдельных диодах обратное напряжение может оказаться выше предельного, что повлечет пробой диодов. Поясним это примером. Пусть в некотором выпрямителе амплитуда обратного напряжения составляет 1000 В и применены диоды с Uобр max = 400 В. Очевидно, что необходимо соединить последовательно не менее трех диодов. Предположим, что обратные сопротивления диодов Rо6р1, = Rобр2 = 1 МОм и Rо6р3 = 3 МОм. Обратное напряжение распределяется пропорционально обратным сопротивлениям, и поэтому получится Uо6р1, = Uобр2 = 200 В и Uо6р3, = 600 В. На третьем диоде (кстати говоря, он является лучшим, так как у него наибольшее Rобр) обратное напряжение выше предельного, и он может быть пробит. Если это произойдет, то напряжение 1000 В распределится между оставшимися диодами и на каждом из них будет 500 В. Ясно, что любой из этих диодов может пробиться, после чего все обратное напряжение 1000 В будет приложено к одному диоду, который его не выдержит. Такой последовательный пробой диодов иногда происходит за доли секунды.
Рисунок 2.26 – Последовательное соединение диодов Для того чтобы обратное напряжение распределялось равномерно между диодами независимо от их обратных сопротивлений, применяют шунтирование диодов резисторами (рисунок 2.26). Сопротивления R ш резисторов должны быть одинаковы и значительно меньше наименьшего из обратных сопротивлений диодов. Но вместе с тем R ш не должно быть слишком малым, чтобы чрезмерно не возрос ток при обратном напряжении, т. е. чтобы не ухудшилось выпрямление. Для рассмотренного примера можно взять резисторы с сопротивлением 100 кОм. Тогда при обратном напряжении сопротивление каждого участка цепи, состоящего из диода и шунтирующего резистора, будет несколько меньше 100 кОм и общее обратное напряжение разделится между этими участками примерно на три равные части. На каждом участке это напряжение окажется меньше 400 В и диоды будут работать надежно. Обычно шунтирующие резисторы имеют сопротивление от нескольких десятков до нескольких сотен килоом. Параллельное соединение диодов применяют в том случае, когда нужно получить прямой ток, больший предельного тока одного диода. Но если диоды одного типа просто соединить параллельно, то вследствие неодинаковости вольт-амперных характеристик они окажутся различно нагруженными и в некоторых ток будет больше предельного. Различие в прямом токе у однотипных диодов может составлять десятки процентов. Для примера на рисунке 2.27, а показаны характеристики прямого тока двух диодов одного и того же типа, у которых Iпр max = 0,2 А. Пусть от этих диодов требуется получить прямой ток 0,4 А. Если их соединить параллельно, то при токе 0,2 А на первом диоде напряжение равно 0,4 В (кривая 1). А на втором диоде при таком же напряжении ток будет лишь 0,05 А (кривая 2). Таким образом, общий ток составит 0,25 А, а не 0,4 А. Увеличивать напряжение на диодах нельзя, так как в первом диоде ток станет больше предельного. Рисунок 2.27 – Параллельное соединение диодов Из характеристик видно, что для получения во втором диоде тока 0,2 А надо иметь на нем напряжение 0,5 В, т. е. на 0,1 В больше, чем на первом диоде. Поэтому, чтобы установить правильный режим работы диодов, надо подвести к ним напряжение 0,5 В, но последовательно с первым диодом включить уравнительный резистор (рисунок 2.27, б) – с целью поглощения излишнего для первого диода напряжения 0,1 В. Ясно, что сопротивление этого резистора Rу = 0,1:0,2 = 0,5 Ом. При наличии такого резистора оба диода будут нагружены одинаково током в 0,2 А. Практически редко включают параллельно больше трех диодов. Уравнительные резисторы с сопротивлением в десятые доли ома или единицы ом обычно подбирают экспериментально до получения в рабочем режиме одинаковых токов в диодах. Иногда включают уравнительные резисторы с сопротивлением, в несколько раз большим, чем прямое сопротивление диодов, для того чтобы ток в каждом диоде определялся главным образом сопротивлением R у . Но в этом случае происходит дополнительное падение напряжения на Ry ,, превышающее в несколько раз прямое напряжение диодов, и КПД, конечно, снижается. Если нежелательно включать уравнительные резисторы, то надо подобрать диоды с примерно одинаковыми характеристиками. Однако рекомендуется по возможности не прибегать к параллельному соединению диодов.
Импульсные диоды
Во многих современных радиоэлектронных устройствах полупровод-никовые диоды часто работают в импульсном режиме (импульсных цепях) при длительности импульсов, равной единицам или долям микросекунды. От выпрямительных диодов они отличаются малыми емкостями p-n переходов (доли микроварад). Рассмотрим особенности этого режима на примере, когда диод соединен последовательно с нагрузкой, сопротивление которой Rн во много раз больше прямого сопротивления диода (Rн» Rпр ) (рисунок 2.28). Пусть такая цепь находится под действием импульсного напряжения, которое состоит из короткого импульса прямого напряжения (положительного импульса), отпирающего диод, и более длительного импульса обратного напряжения (отрицательного импульса), надежно запирающего диод до прихода следующего положительного импульса. Импульсы напряжения имеют прямоугольную форму (рисунок 2.28, а). График тока, а следовательно, и пропорционального ему напряжения на показан для этого случая на рисунке 2.28, б. При прямом напряжении ток в цепи определяется сопротивлением Rн. Хотя прямое сопротивление диода нелинейно, но оно почти не влияет на ток, так как во много раз меньше Rн. Поэтому импульсы прямого тока почти не искажены. Некоторые сравнительно небольшие искажения могут наблюдаться только при очень коротких (длительностью в доли микросекунды) импульсах. При перемене полярности напряжения, т. е. при подаче обратного напряжения, диод запирается не сразу, а в течение некоторого времени проходит импульс обратного тока (рисунок 2.28, б), значительно превосходящий по амплитуде обратный ток в установившемся режиме iобр. уст. Главная причина это разряд диффузионной емкости, т. е. рассасывание зарядов, образованных подвижными носителями в n- и р-областях. Поскольку концентрации примесей в этих областях обычно, весьма различны, то практически импульс обратного тока создается рассасыванием заряда, накопленного в базе, т. е. в области с относительно малой проводимостью. Например, если n-область является эмиттером, а р-область - базой, то при прямом токе можно пренебречь потоком дырок из р-области в n-область и рассматривать только поток электронов из n-области в р-область. Этот диффузионный поток через переход вызывает накопление электронов в р-области, так как они не могут сразу рекомбинировать с дырками или дойти до вывода от р-области. При перемене полярности напряжения накопленный в базе заряд начинает двигаться в обратном направлении и возникает импульс обратного тока. Чем больше был прямой ток, тем больше электронов накапливалось в базе и тем сильнее импульс обратного тока. Двигаясь от базы обратно в эмиттер, электроны частично рекомбинируют с дырками, а частично проходят через n-область до металлического вывода от этой области. Исчезновение (рассасывание) заряда, накопленного в базе, длится некоторое время. К концу рассасывания обратный ток достигает своего установившегося, весьма малого, значения iобр уст. Иначе можно сказать, что обратное сопротивление диода Rобр сначала оказывается сравнительно небольшим, а затем постепенно возрастает до своего нормального установившегося значения. Время τвос от момента возникновения обратного тока до момента, когда он принимает установившееся значение, называют временем восстановления обратного сопротивления. Это время - важный параметр диодов, предназначенных для импульсной работы. У таких диодов τвос не превышает десятых долей микросекунды. Чем оно меньше, тем лучше: тогда диод быстрее запирается. Вторая причина возникновения импульса обратного тока - заряд барьерной емкости диода под действием обратного напряжения. Зарядный ток этой емкости складывается с током рассасывания заряда, и в результате получается суммарный импульс обратного тока, который тем больше, чем больше емкость диода. Эта емкость у специальных диодов для импульсной работы не превышает единиц пикофарад. Если импульс прямого тока имеет длительность значительно большую, чем длительность рассмотренных переходных процессов, то импульс обратного тока получается во много раз более коротким (рисунок 2.28, в) и его можно не принимать во внимание. Уменьшение емкостей достигается за счёт уменьшения площадей p-n переходов. Для уменьшения τвос диоды изготавливают так, чтобы ёмкость перехода была малой и рекомбинация носителей происходила как можно быстрее. Допускаются мощности рассеяния у них невелики (30-40 мВт). По способу создания р-n переходов импульсные диоды подразделяются на точечные, сплавные, меза- и планарно-диффузионные [7]. В быстродействующих импульсных цепях широко используются диоды Шотки. У этих диодов не затрачивается время на накопление и рассасывание зарядов в базе. ВАХ диодов Шотки напоминает характеристику диодов на основе p-n переходов. Отличие состоит в том, что прямая ветвь в пределах 8-10 декад приложенного напряжения (декада – изменение значения в 10 раз) представляет почти идеальную экспонициальную кривую, а обратные токи малы (доли-десятки нА[1]). Большинство конструкций импульсных диодов имеет металлостеклянный или стеклянный корпус. На рисунке 2.29 показана конструкция германиевых импульсных микросплавных диодов 1Д508А, ГД508А, ГД508Б, предназначенных для применения в сверхбыстрых действующих формирователях импульсов. Выпускаются диоды в стеклянном корпусе. Масса диода не более 0,2 г.
Рисунок 2.29 - Конструкция германиевых импульсных микросплавных диодов 1Д508А, ГД508А, ГД508Б
На рисунке 2.30 показана конструкция кремниевого диффузионного импульсного диода КД805А, предназначенного для применения в импульсных схемах. Выпускаются диоды в металлическом корпусе с гибкими выводами. Диод обозначается на корпусе продольной полосой красного цвта. Масса диода не более 0,15 г.
Рисунок 2.30 - Конструкция кремниевого диффузионного импульсного диода КД805А Импульсные диоды обладают следующими основными параметрами: 1. Общая ёмкость диода Сд (доли nФ – несколько пФ) 2. Максимальная импульсное прямое напряжение Uпр и max (единицы В) 3. Максимально допустимый импульсный ток Iпр и max (сотни mA) 4. Время установления прямого напряжения tуст – время от момента подачи импульса прямого тока до достижения заданного значения прямого напряжения на нём (доли нс – доли мкс). Это время Зависит от скорости движения внутрь базы инпретированных через переход неосновных носителей, в результате которого наблюдается уменьшене её сопротивления. 5. Время восстановления обратного сопротивления диода tвост (τвост.) Изготовление р-n-переходов методом диффузии примесей значительно улучшает параметр tвост. Стабилитроны Как было показано в пункте 1.3.5 вольт-амперная характеристика полупроводниковых диодов в области электрического пробоя имеет участок, который может быть использован для стабилизации напряжения. Такой участок у кремниевых плоскостных диодов соответствует изменениям обратного тока в широких пределах. При этом до наступления пробоя обратный ток очень мал, а в режиме пробоя, т. е. в режиме стабилизации, он становится такого же порядка, как и прямой ток. В настоящее время выпускаются исключительно кремниевые стабилитроны многих типов. Их также называют опорными диодами, так как получаемое от них стабильное напряжение в ряде случаев используется в качестве эталонного. На рисунке 2.31 дана типичная вольт-амперная характеристика стабилитрона при обратном токе, показывающая, что в режиме стабилизации напряжение меняется мало. Характеристика для прямого тока стабилитрона такая же, как у обычных диодов.
Рисунок 2.31 - Вольтамперная характеристика стабилитрона при обратном токе Кремниевые стабилитроны могут быть изготовлены на малые' напряжения (единицы вольт), а именно такие нужны для питания многих транзисторных устройств. Напряжение стабилизации Uст может быть примерно от 3 до 200 В. изменение тока стабилитрона от Imin до Imax составляет десятки и даже сотни миллиампер. Максимальная допустимая мощность Рmах, рассеиваемая в стабилитроне, от сотен милливатт до единиц ватт. Дифференциальное сопротивление Rд = Δu/Δi в режиме стабилизации может быть от десятых долей Ома для низковольтных мощных стабилитронов до 200 Ом для стабилитронов на более высокие напряжения. Низковольтные стабилитроны небольшой мощности имеют сопротивление Rд от единиц до десятков Ом. Чем меньше Rд, тем лучше стабилизация. При идеальной стабилизации было бы Rд = 0. Так как Rд является сопротивлением переменному току, то его не следует путать со статическим сопротивлением, т. е. сопротивлением постоянному току R0 = и/ i . Сопротивление Rо всегда во много раз больше Rд.Влияние температуры оценивается температурным коэффициентом напряжения стабилизации ТКН, который характеризует изменение напряжения и„ при изменении температуры на один градус, т. е.
ТКН=ΔUст/(UстΔT) . (2.10)
Температурный коэффициент напряжения может быть от 10-5 до 10-3 К-1. Значение Uст и знак ТКН зависят от удельного сопротивления основного полупроводника. Стабилитроны на напряжения до 7 В изготовляются из кремния с малым удельным сопротивлением, т. е. с большой концентрацией примесей. В этих стабилитронах п - р-переход имеет малую толщину, в нем действует поле с высокой напряженностью и пробой происходит главным образом за счет туннельного эффекта. При этом ТКН получается отрицательным. Если же применен кремний с меньшей концентрацией примесей, то n-р-переход будет толще. Его пробой возникает при более высоких напряжениях и является лавинным. Для таких стабилитронов характерен положительный ТКН. Простейшая схема применения стабилитрона показана на рисунке 2.32. Нагрузка (потребитель) включена параллельно стабилитрону. Поэтому в режиме стабилизации, когда напряжение на стабилитроне почти постоянно, такое же напряжение будет и на нагрузке. Все изменения напряжения источника Е при его нестабильности почти полностью поглощаются ограничительным резистором Rогр.
Рисунок 2.32 - Схема включения стабилитрона Наиболее часто стабилитрон работает в таком режиме, когда напряжение источника нестабильно, а сопротивление нагрузки Rн постоянно. Для установления и поддержания правильного режима стабилизации в этом случае сопротивление Rогр должно иметь определенное значение. Обычно Rогр рассчитывают для средней точки Т характеристики стабилитрона. Если напряжение Е меняется от Еmin до Еmax, то можно Rогр найти по следующей формуле:
Rогр = (Еср – Uст)/(Iср + IН) , (2.11)
где Еср = 0,5 (Еmin - Еmax) - среднее напряжение источника; Iср = 0,5 (Imin + Imax) - средний ток стабилитрона; Iн = Uст / Rн - ток нагрузки. Если напряжение Е станет изменяться в ту или другую сторону, то будет изменяться ток стабилитрона, но напряжение на нем, а следовательно, и на нагрузке будет почти постоянным.
Поскольку все изменения напряжения источника должны поглощаться ограничительным резистором, то наибольшее изменение этого напряжения, равное Еmax - Еmin, должно соответствовать наибольшему возможному изменению тока, при котором ещё сохраняется стабилизация, т. е. Imax - Imin. Отсюда следует, что если значение Е изменяется на ΔЕ, то стабилизация будет осуществляться только при соблюдении условия
ΔЕ≤( Imax - Imin) Rогр . (2.12)
Стабилизация в более широком диапазоне изменения Е возможна при увеличении Rогр. Но из формулы (2.12) следует, что большее Rогр получается при меньшем Iн, т. е. при большем Rн. Повышение Еср также дает увеличение Rогр. Иногда необходимо получить стабильное напряжение более низкое, чем дает стабилитрон. Тогда последовательно с нагрузкой включают добавочный резистор, сопротивление которого легко рассчитать по закону Ома (рисунок 2.33). Рисунок 2.33 - Включение добавочного резистора для понижения стабильного напряжения на нагрузке Второй возможный режим стабилизации применяется в том случае, когда Е= const, а Rн изменяется в пределах от Rн min до Rн max. Для такого режима Rогр можно определить по средним значениям токов по формуле
Rогр=(E-Uст)/(Iср+ Iн ср) , (2.13) где Iн ср=0,5 (I н min - I н max), при чём I н min=Uст/ Rн max и I н max= Uст/ Rн min.
Работу схемы в данном режиме можно объяснить так. Поскольку Rогр постоянно и падение напряжения на нем, равное Е - Uст, также постоянно, то и ток в Rогр, равный Iср+ Iн ср должен быть постоянным. Но последнее возможно только в том случае, если ток стабилитрона I и ток Iн изменяются в одинаковой степени, но в противоположные стороны. Например, если Iн увеличивается, то ток I на столько же уменьшается, а их сумма остается неизменной. Для получения более высоких стабильных напряжений применяется последовательное соединение стабилитронов, рассчитанных на одинаковые токи (рисунок 2.34). Вследствие разброса характеристик и параметров у отдельных экземпляров стабилитронов данного типа их параллельное соединение с целью получения больших токов не рекомендуется. Оно допускается только при условии, что суммарная мощность, рассеиваемая на всех стабилитронах, не превышает предельной мощности одного стабилитрона.
Рисунок 2.34 - Последовательное включение стабилитронов
Для повышения стабильности напряжения может применяться схема каскадного соединения стабилитронов (рисунок 2.35) в которой стабилитрон VD1 должен иметь более высокое напряжение Uст, нежели стабилитрон VD2.
Рисунок 2.35 - Каскадное включение стабилитронов Эффективность стабилизации напряжения характеризуется коэффициентом стабилизации кст, который показывает, во сколько раз относительное изменение напряжения на выходе схемы стабилизации меньше, чем относительное изменение напряжения на входе. Для простейшей схемы по рисунку 2.32 можно написать
. (2.14)
Практически полупроводниковый стабилитрон может обеспечить кст,
кст = кст1 кст2… (2.15)
и уже при двух звеньях достигает нескольких сотен. Недостаток рассматриваемых схем стабилизации состоит в том, что потери мощности в самом стабилитроне и на Rогр велики, особенно в схеме каскадного соединения. Следует еще отметить, что если имеют место пульсации напряжения Е, то стабилитрон значительно сглаживает их. Это объясняется тем, что стабилитрон обладает малым сопротивлением переменному току. Оно обычно во много раз меньше Rогр. Поэтому большая часть напряжения пульсаций поглощается в Rогр, а на стабилитроне и на нагрузке будет лишь малая часть этого напряжения. Конструкция стабилитронов очень незначительно отличается от конструкций выпрямительных диодов.
Стабисторы Это полупроводниковые диоды, предназначенные для работы в стабилизаторах напряжения, причем в отличие от стабилитронов у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжения мало зависит от тока в некоторых его пределах. Как правило, стабисторы изготовляются из кремния и имеют напряжение стабилизации в среднем около 0,7 В. Ток стабисторов обычно может быть от 1 мА до нескольких десятков миллиампер. Для получения стабильного напряжения в единицы вольт соединяют последовательно несколько стабисторов. Особенность стабисторов – отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их последовательно с обычными стабилитронами, имеющими положительный температурный коэффициент напряжения.
Варикапы Эти плоскостные диоды, иначе называемые параметрическими, работают при обратном напряжении, от которого зависит барьерная емкость. Таким образом, варикапы представляют собой конденсаторы переменной емкости, управляемые не механически, а электрически, т. е. изменением обратного напряжения. Варикапы применяются главным образом для настройки колебательных контуров, а также в некоторых специальных схемах, например в так называемых параметрических усилителях. На рисунке 2.36 показана простейшая схема включения варикапа в колебательный контур. Изменяя с помощью потенциометра R обратное напряжение на варикапе, можно изменять резонансную частоту контура. Добавочный резистор R1 с большим сопротивлением включен для того, чтобы добротность контура не снижалась заметно от шунтирующего влияния потенциометра R. Конденсатор Ср является разделительным. Без него варикап был бы для постоянного напряжения замкнут накоротко катушкой L.
Рисунок 2.36 – Схема включения варикапа в колебательный контур в качестве конденсатора переменной емкости
В качестве варикапов довольно успешно можно использовать кремниевые стабилитроны при напряжении ниже UСТ, когда обратный ток еще очень мал и, следовательно, обратное сопротивление очень велико. Туннельные диоды Предложенный в 1958 г. японским ученым Л. Ёсаки туннельный диод изготовляется из германия или арсенида галлия с высокой концентрацией примесей (1019 —1020 см-3), т.е. с очень малым удельным сопротивлением, в сотни или тысячи раз меньшим, чем в обычных диодах. Такие полупроводники с малым сопротивлением называют вырожденными. Электронно-дырочный переход в вырожденном полупроводнике получается в десятки раз тоньше (10-6 см), чем в обычных диодах, а потенциальный барьер примерно в два раза выше. В обычных полупроводниковых диодах высота потенциального барьера равна примерно половине ширины запрещенной зоны, а в туннельных диодах она несколько больше этой ширины. Вследствие малой толщины перехода напряженность поля в нем даже при отсутствии внешнего напряжения достигает 10б В/см. В туннельном диоде, как и в обычном, происходит диффузионное перемещение носителей через электронно-дырочный переход и обратный их дрейф под действием поля. Но кроме этих процессов основную роль играет туннельный эффект. Он состоит в том, что согласно законам квантовой физики при достаточно малой высоте потенциального барьера возможно проникновение электронов через барьер без изменения их энергии. Такой туннельный переход электронов с энергией, меньшей высоты потенциального барьера (в электрон-вольтах), совершается в обоих направлениях, но только при условии, что по другую сторону барьера для туннелирующих электронов имеются свободные уровни энергии. Подобный эффект невозможен с точки зрения классической физики (в которой электрон рассматривается как частица материи с отрицательным зарядом), но оказывается вполне реальным в явлениях микромира, подчиняющихся законам квантовой механики, согласно которым электрон имеет двойственную природу: с одной стороны, он является частицей, а с другой стороны, он может проявлять себя как электромагнитная волна. Но электромагнитная волна может проходить через потенциальный барьер, т. е. через область электрического поля, не взаимодействуя с этим полем. Процессы в туннельном диоде удобно рассматривать на энергетических диаграммах, показывающих уровни энергии валентной зоны и зоны проводимости в n- и р-областях. Вследствие возникновения контактной разности потенциалов в n-р-переходе границы всех зон в одной из областей сдвинуты относительно соответствующих зон другой области на высоту потенциального барьера, выраженную в электрон-вольтах. На рисунке 2.37 с помощью энергетических диаграмм изображено возникновение туннельных токов в электронно-дырочном переходе туннельного диода. Для того чтобы не усложнять рассмотрение туннельного эффекта, диффузионный ток и ток проводимости на этом рисунке не показаны. Диаграмма на рисунке 2.37, а соответствует отсутствию внешнего напряжения. Высота потенциального барьера взята для примера 0,8 эВ, а ширина запрещенной зоны составляет 0,6 эВ. Горизонтальными линиями в зоне проводимости и в валентной зоне показаны энергетические уровни, полностью или частично занятые электронами. В валентной зоне и зоне проводимости изображены также не заштрихованные горизонтальными линиями участки, которые соответствуют уровням энергии, не занятым электронами. Как видно, в зоне проводимости полупроводника n-типа и в валентной зоне полупроводника р-типа имеются занятые электронами уровни, которым соответствуют одинаковые энергии. Поэтому возможен туннельный переход электронов из области n в область р (прямой туннельный ток iпр) и из области р в область n (обратный туннельный ток io6p). Эти два тока одинаковы по значению, и результирующий ток равен нулю.
Рисунок 2.37 – Энергетические диаграммы p-n-перехода в туннельном диоде при различном приложенном напряжении
На рисунке 2.37, б показана диаграмма при прямом напряжении 0,1 В, за счет которого потенциальный барьер понизился на 0,1 эВ и составляет 0,7 эВ. В этом случае туннельный переход электронов из области n в область р усиливается, так как в области р имеются в валентной зоне свободные уровни с такими же энергиями, как энергии уровней, занятых электронами в зоне проводимости области n. А переход электронов из валентной зоны области р в область n невозможен, так как уровни, занятые электронами в валентной зоне области р, соответствуют в области n энергетическим уровням запрещенной зоны. Обратный туннельный ток отсутствует, и результирующий ток достигает максимума. В промежуточных случаях, например когда uпр = 0,05 В, существует и прямой и обратный туннельный ток, но обратный ток меньше прямого. Результирующим будет прямой ток, но он меньше максимального, получающегося при uпр = 0,1 В. Случай, показанный на рисунке 2.37, в, соответствует uпр = 0,2 В, когда высота потенциального барьера стала 0,6 эВ. При этом напряжении туннельный переход невозможен, так как уровням, занятым электронами в данной области, соответствуют в другой области энергетические уровни, находящиеся в запрещенной зоне. Туннельный ток равен нулю. Он отсутствует также и при большем прямом напряжении. Следует помнить, что при возрастании прямого напряжения увеличивается прямой диффузионный ток диода. При рассмотренных значениях uпр < 0,2 В диффузионный ток гораздо меньше туннельного тока, а при uпр > 0,2 В диффузионный ток возрастает и достигает значений, характерных для прямого тока обычного диода. На рисунке 2.37, г рассмотрен случай, когда обратное напряжение uобр = 0,2 В. Высота потенциального барьера стала 1 эВ, и значительно увеличилось число уровней, занятых электронами в валентной зоне р-области и соответствующих свободным уровням в зоне проводимости n-области. Поэтому резко возрастает обратный туннельный ток, который получается такого же порядка, как и ток при прямом напряжении. Вольтамперная характеристика туннельного диода (рисунок 2.38) поясняет рассмотренные диаграммы. Как видно, при u = 0 ток равен нулю. Увеличение прямого напряжения до 0,1 В дает возрастание прямого туннельного тока до максимума (точка А). Дальнейшее увеличение прямого напряжения до 0,2 В сопровождается уменьшением туннельного тока. Поэтому в точке Б получается минимум тока и характеристика имеет падающий участок АБ, для которого характерно отрицательное сопротивление переменному току
Ri = Du/Di < 0. (2.16)
После этого участка ток снова возрастает за счет диффузионного прямого тока, характеристика которого на рисунке 2.38 показана штриховой линией. Обратный ток получается такой же, как прямой, т. е. во много раз больше, нежели у обычных диодов.
Рисунок 2.38 – Вольтамперная характеристика туннельного диода
Основные параметры туннельных диодов – ток максимума Iтах, ток минимума Imin (часто указывается отношение Imax/Imin, которое бывает равно нескольким единицам), напряжение максимума U1 напряжение минимума U2, наибольшее напряжение U3, соответствующее току Iтах на втором восходящем участке характеристики (участок БВ). Разность DU = U3 – U1 называется напряжением переключения или напряжением скачка. Токи в современных туннельных диодах составляют единицы миллиампер, напряжения — десятые доли вольта. К параметрам также относится отрицательное дифференциальное сопротивление диода (обычно несколько десятков Ом), общая емкость диода (единицы или десятки пикофарад), время переключения (доли наносекунды) и максимальная, или критическая, частота (сотни гигагерц). Включая туннельный диод в различные схемы, можно его отрицательным сопротивлением компенсировать положительное активное сопротивление (если рабочая точка будет находиться на участке АБ) и получать режим усиления или генерации колебаний. Например, в обычном колебательном контуре за счет потерь всегда имеется затухание. Но с помощью отрицательного сопротивления туннельного диода можно уничтожить потери в контуре и получить в нем незатухающие колебания. Простейшая схема генератора колебаний с туннельным диодом показана на рисунке 2.39.
Рисунок 2.39 – Простейшая схема включения туннельного диода для генерации колебаний
Работу такого генератора можно объяснить следующим образом. При включении питания в контуре LC возникают свободные колебания. Без туннельного диода они затухли бы. Пусть напряжение Е выбрано таким, чтобы диод работал на падающем участке характеристики, и пусть во время одного полупериода переменное напряжение контура имеет полярность, показанную на рисунке знаками « + » и «–» без кружков (знаки « + » и «–» в кружках относятся к постоянным напряжениям). Напряжение от контура подается на диод и является для него обратным. Поэтому прямое напряжение на диоде уменьшается. Но за счет работы диода на падающем участке характеристики ток возрастает, т. е. пройдет дополнительный импульс тока, который добавит энергию в контур. Если эта дополнительная энергия достаточна для компенсации потерь, то колебания в контуре станут незатухающими. Туннельный переход электронов через потенциальный барьер происходит в чрезвычайно малые промежутки времени: 10-12-10-14с, или 10-3-10-5нс. Поэтому туннельные диоды хорошо работают на сверхвысоких частотах. Например, можно генерировать и усиливать колебания с частотой до десятков и даже сотен гигагерц. Следует заметить, что частотный предел работы туннельных диодов практически определяется не инерционностью туннельного эффекта, а емкостью самого диода, индуктивностью его выводов и его активным сопротивлением. Принцип усиления с туннельным диодом показан на рисунке 2. 40. Для получения режима усиления необходимо иметь строго определенные значения Е и Rн. Сопротивление RH должно быть немного меньше абсолютного значения отрицательного сопротивления диода. Тогда при отсутствии входного напряжения исходная рабочая точка Т может быть установлена на середине падающего участка (эта точка является пересечением линии нагрузки с характеристикой диода). При подаче входного напряжения с амплитудой Um вх линия нагрузки будет «совершать колебания», перемещаясь параллельно самой себе. Рисунок 2.40 – Простейшая схема усилителя с туннельным диодом (а) и график, поясняющий процесс усиления (б)
Крайние ее положения показаны штриховыми линиями. Они определяют конечные точки рабочего участка АБ. Проектируя эти точки на ось напряжений, получаем амплитуду выходного напряжения Um вых, которая оказывается значительно больше амплитуды входного. Особенность усилителя на туннельном диоде – отсутствие отдельной входной и отдельной выходной цепи, что создает некоторые трудности при осуществлении схем с несколькими каскадами усиления. Усилители на туннельных диодах могут давать значительное усиление при невысоком уровне шумов и работают устойчиво. Туннельный диод используется также в качестве быстродействующего переключателя, причем время переключения может быть около 10–9 с, т.е. около 1 нс, и даже меньше. Схема работы туннельного диода в импульсном режиме в общем случае такая же, как на рисунке 2.40, но только входное напряжение представляет собой импульсы, а сопротивление RH должно быть несколько больше абсолютного значения отрицательного сопротивления диода. На рисунке 2.41 показана диаграмма работы туннельного диода в импульсном режиме. Напряжение питания Е выбрано таким, что при отсутствии входного импульса диод работает в точке А и ток получается максимальным (Imах), т. е. диод открыт. При подаче положительного импульса входного напряжения прямое напряжение на диоде увеличивается и режим работы диода скачком переходит в точку Б. Ток уменьшается до минимального значения Imin, что условно можно считать закрытым состоянием диода. А если установить постоянное напряжение Е, соответствующее точке Б, то можно переводить диод в точку А подачей импульсов напряжения отрицательной полярности.
Рисунок 2.41 – Работа туннельного диода в импульсном режиме
Туннельные диоды могут применяться в технике СВЧ, а также во многих импульсных радиоэлектронных устройствах, рассчитанных на высокое быстродействие. Помимо весьма малой инерционности достоинством туннельных диодов является их стойкость к ионизирующему излучению, а также малое потребление энергии от источника питания. К сожалению, эксплуатация туннельных диодов выявила существенный их недостаток. Он заключается в том, что эти диоды подвержены значительному старению, т. е. с течением времени их характеристики и параметры заметно изменяются, что может привести к нарушению нормальной работы того или иного устройства. Надо полагать, что в дальнейшем этот недостаток удастся свести к минимуму. Если для диода применить полупроводник с концентрацией примеси около 1018 см–3, то при прямом напряжении туннельный ток практически отсутствует и в вольт-амперной характеристике нет падающего участка (рисунок 2.42). Зато при обратном напряжении туннельный ток по-прежнему значителен, и поэтому такой диод хорошо пропускает ток в обратном направлении. Подобные диоды, получившие название обращенных, могут работать в качестве детекторов на более высоких частотах, нежели обычные диоды.
Рисунок 2.42 – Вольтамперная характеристика и условное графическое обозначение обращенного диода
Все туннельные диоды имеют весьма малые размеры. Например, они могут быть оформлены в цилиндрических герметичных металлостеклянных корпусах диаметром 3 – 4 мм и высотой около 2 мм. Выводы у них гибкие ленточные. Масса не превышает 0,15 г. В настоящее время разрабатываются новые типы туннельных диодов, исследуются новые полупроводниковые материалы для них и проблемы замедления старения. |
Последнее изменение этой страницы: 2019-03-31; Просмотров: 915; Нарушение авторского права страницы