Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Челночные механизмы переноса восстановленных эквивалентов через митохондриальную мембрану (глицерофосфатный и малатаспартатный).



NADH, образующийся при окислении глицеральдегид-3-фосфата в аэробном гликолизе, подвергается окислению путём переноса атомов водорода в мх дыхательную цепь. Но!!!цитозольный NADH не способен передавать водород на дыхательную цепь, потому что мх мембрана для него непроницаема. Перенос водорода через мембрану происходит с помощью "челночных" механизмов. В этих системах водород транспортируется через мембрану при участии пар субстратов, связанных соответствующими дегидрогеназами, с обеих сторон мх мембр. Известны 2 челночные системы. В первой- водород от NADH в цитозоле передаётся на дигидроксиацетонфосфат ферментом глицерол-3-фосфатдегидрогеназой (NAD-зависимый фермент, назван по обратной реакции). Образованный в ходе этой реакции глицерол-3-фосфат, окисляется далее ферментом внутренней мембраны митохондрий - глицерол-3-фосфатдегидрогеназой (FAD-зависимым ферментом). Затем протоны и электроны с FADH2 переходят на убихинон и далее по ЦПЭ.Глицеролфосфатная челночная система работает в клетках белых мышц и гепатоцитов. Однако в клетках сердечных мышц митохондриальная глицерол-3-фосфатдегидрогеназа отсутствует.

 Вторая челночная система, в которой участвуют малат, цитозольная и митоховдриальная малат-дегидрогеназы, является более универсальной. В цитоплазме NADH восстанавливает оксалоацетат в малат, который при участии переносчика проходит в митохондрии, где окисляется в оксалоацетат NAD-зависимой малатдегидрогеназой. Восстановленный в ходе этой реакции NAD отдаёт водород в мх ЦПЭ. Однако образованный из малата оксалоацетат выйти самостоятельно из митохондрий в цитозоль не может, так как мембрана митохондрий для него непроницаема. Поэтому оксалоацетат превращается в аспартат, который и транспортируется в цитозоль, где снова превращается в оксалоацетат. Превращения оксалоацетата в аспартат и обратно связаны с присоединением и отщеплением аминогруппы (реакции трансаминирования). Эта челночная система называется малат-аспартатной . Результат её работы - регенерация цитоплазматического NAD+ из NADH.  

 

77 . Окисление углеводов в аэробных условиях до СО2 и Н2О. Энергетический выход окисления глюкозы. Метаболическая регуляция, влияние ингибиторов.

Выход АТФ при аэробном гликолизе. На образование фруктозо-1,6-бисфосфата из одной молекулы глюкозы требуется 2 молекулы АТФ (реакции 1 и 3 на рис. 7-33). Реакции, связанные с синтезом АТФ, происходят после распада глюкозы на 2 молекулы фосфотриозы, т.е. на втором этапе гликолиза. На этом этапе происходят 2 реакции субстратного фосфорилирования и синтезируются 2 молекулы АТФ (реакции 7 и 10). Кроме того, одна молекула глицеральдегид-3-фосфата дегидрируется (реакция 6), a NADH передаёт водород в митохондриальную ЦПЭ, где синтезируется 3 молекулы АТФ путём окислительного фосфорилирования. В данном случае количество АТФ (3 или 2) зависит от типа челночной системы. Следовательно, окисление до пирувата одной молекулы глицеральдегид-3-фосфата сопряжено с синтезом 5 молекул АТФ. Учитывая, что из глюкозы образуются 2 молекулы фосфотриозы, полученную величину нужно умножить на 2 и затем вычесть 2 молекулы АТФ, затраченные на первом этапе. Таким образом, выход АТФ при аэробном гликолизе составляет (5×2) - 2 = 8 АТФ.

Выход АТФ при аэробном распаде глюкозы до конечных продуктов. В результате гликолиза образуется пируват, который далее окисляется до СО2 и Н2О в ОПК, описанном в разделе 6. Теперь можно оценить энергетическую эффективность гликолиза и ОПК, которые вместе составляют процесс аэробного распада глюкозы до конечных продуктов (табл). Таким образом, выход АТФ при окислении 1 моль глюкозы до СО2 и Н2О составляет 38 моль АТФ. В процессе аэробного распада глюкозы происходят 6 реакций дегидрирования. Одна из них протекает в гликолизе и 5 в ОПК. Субстраты для специфических NAD-зависимых дегидрогеназ: глицеральдегид-3-фосфат, жируват, изоцитрат, α-кетоглутарат, малат. Одна реакция дегидрирования в цитратном цикле под действием сукцинатдегидрогеназы происходит с участием кофермента FAD. Общее количество АТФ, синтезированное путём окислительного фофорилирования, составляет 17 моль АТФ на 1 моль глицеральдегидфосфата. К этому необходимо прибавить 3 моль АТФ, синтезированных путём субстратного фосфорилирования (две реакции в гликолизе и одна в цитратном цикле). Учитывая, что глюкоза распадается на 2 фос-фотриозы и что стехиометрический коэффициент дальнейших превращений равен 2, полученную величину надо умножить на 2, а из результата вычесть 2 моль АТФ, использованные на первом этапе гликолиза.

Таблица. Этапы аэробного распада глюкозы

Этапы аэробного распада глюкозы Количество использованного АТФ, моль Количество синтезированного АТФ, моль
I. Аэробный гликолиз    
Глюкоза → 2 Пируват -2 +10
II. Окислительное декарбоксилирование пирувата -  
2 (Пируват → Ацетил-КоА)   +6
III. Цитратный цикл    
2 (Ацетил-КоА → СО2+ Н2О)   +24
Суммарный выход АТФ при окислении 1 моль глюкозы   +38

 Регуляция: Поскольку основное значение гликолиза состоит в синтезе АТФ, его скорость должна коррелировать с затратами энергии в организме. Большинство реакций гликолиза обратимы, за исключением трёх, катализируемых гексокиназой (или глюкокиназой), фосфофруктокиназой и пируваткиназой. Регуляторные факторы, изменяющие скорость гликолиза, а значит и образование АТФ, направлены на необратимые реакции. Показателем потребления АТФ является накопление АДФ и АМФ. Последний образуется в реакции, катализируемой аденилаткиназой:                                     2 АДФ ↔ АМФ + АТФ

Даже небольшой расход АТФ ведёт к заметному увеличению АМФ. Отношение уровня АТФ к АДФ и АМФ характеризует энергетический статус клетки (см. раздел 6), а его составляющие служат аллостерическими регуляторами скорости как общего пути катаболизма, так и гликолиза. На рисунке 7-42 показана аллостерическая регуляция скорости катаболизма глюкозы в скелетных мышцах. Существенное значение для регуляции гликолиза имеет изменение активности фосфофруктокиназы, потому что этот фермент, как упоминалось ранее, катализирует наиболее медленную реакцию процесса. Фосфофруктокиназа активируется АМФ, но ингибируется АТФ. АМФ, связываясь с аллостерическим центром фосфофруктокиназы, увеличивает сродство фермента к фруктозо-6-фосфату и повышает скорость его фосфорилирования. Эффект АТФ на этот фермент - пример гомотропного ашюстеризма, поскольку АТФ может взаимодействовать как с аллостерическим, так и с активным центром, в последнем случае как субстрат. При физиологических значениях АТФ активный центр фосфофруктокиназы всегда насыщен субстратами (в том числе АТФ). Повышение уровня АТФ относительно АДФ снижает скорость реакции, поскольку АТФ в этих условиях действует как ингибитор: связывается с аллостерическим центром фермента, вызывает конфор-мационные изменения и уменьшает сродство к его субстратам. Изменение активности фосфофруктокиназы способствует регуляции скорости фосфорилирования глюкозы гексокиназой. Снижение активности фосфофруктокиназы при высоком уровне АТФ ведёт к накоплению как фруктозо-6-фосфата, так и глюкозо-6-фосфата, а последний ингибирует гексокиназу. Следует напомнить, что гексокиназа во многих тканях (за исключением печени и β-клеток поджелудочной железы) ингибируется глюкозо-6-фосфатом. При высоком уровне АТФ снижается скорость цикла лимонной кислоты и дыхательной цепи. В этих условиях процесс гликолиза также замедляется. Следует напомнить, что аллостерическая регуляция ферментов ОПК и дыхательной цепи также связана с изменением концентрации таких ключевых продуктов, как NADH, АТФ и некоторых метаболитов. Так, NADH, накапливаясь в том случае, если не успевает окислиться в дыхательной цепи, ингибирует некоторые аллостерические ферменты цитратного цикла. Физиологическая роль гликолиза в печени и жировой ткани несколько иная, чем в других тканях. В печени и жировой ткани гликолиз в период пищеварения функционирует в основном как источник субстратов для синтеза жиров. Регуляция гликолиза в печени имеет свои особенности и будет рассмотрена позже.


Поделиться:



Последнее изменение этой страницы: 2019-03-31; Просмотров: 166; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.009 с.)
Главная | Случайная страница | Обратная связь