Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Неустойчивые режимы работы компрессора



Помпаж представляет собой автоколебания потока воздуха в проточной части компрессора и воздушно-газовых трактах газо­турбинного двигателя (ГТД), которые вызываются развитием зон срыва потока с лопаток при малых значениях расхода воздуха и/или росте сопротивления за компрессором. Вследствие срыва потока, при малых расходах воздуха, значения давления создаваемые компрессором становится меньшим, чем в воздушном тракте за компрессором. В результате возникает противоток, то есть воздух меняет свое направление на противоположное и начинает двигаться со стороны нагнетания по направлению к всасыванию. После падения давления в воздушном тракте за компрессором, происходит восстановление потока воздуха и возобновляется подача воздуха компрессором, что приводит к росту давления в воздушном тракте за ним, в результате чего явление повторяется.

Частота и амплитуда помпажных колебаний определяется емко­стью воздушно-газового тракта. Помпаж приводит к возникновению ударной волны высокой интенсивности. У ГТД продолжительность одного помпажного цикла, сопровождаемое образованием ударной волны, (возникновение обратного и восстановление нормального течения) длится от 0,1 до 0,5 секунд. Ударная волна характеризуется увеличением статического давления в 2...3 раза и высокой скоростью распространения. Приложенные нагрузки на детали и узлы ГТД от действия ударной волны происходит в виде коротких по времени импульсов и может вызвать погиб лопаток, повреждения корпуса ГТД и подшипников, нарушить узлы крепления и изменить центровку ГТД. Остаточные деформации (прогиб) у корня лопаток вызванные явлением помпажа приводят к развитию усталостных трещин и последующим поломкам лопаток с вытекающими негативными последствиями, связанными с разрушением проточной части компрессоров, турбин, повреждением камер сгорания и других узлов и деталей ГТД. Динамические осевые нагрузки, возникающие при помпаже, являются одной из основных причин повреждений и разрушений упорных подшипников.

Амплитуды продольных колебаний ГТД при помпаже могут дос­тигнуть 10...20мм и приводят к нарушению центровок ротор-корпус ГТД (с последующим задеванием рабочих лопаток о корпус) и ГТД-редуктор.

Для предотвращения помпажа компрессоры снабжают антипомпажным клапаном. Когда режим работы компрессора приближается к границе помпажа, клапан автоматически открывается и сбрасывает часть воздуха за группой ступеней или за компрессором в атмосферу. Сопротивление воздушного тракта за данной группой или через все ступени снижается, и рабочая точка удаляется от границы неустойчивой области работы. Обычно антипомпажные клапаны открываются во время пуска и остановки ГТД.

Расширению диапазона устойчивой работы компрессора спо­собствует применение входного направляющего аппарата с поворот­ными лопатками.

 

Конструкции газовых турбин

Ротор

Вал, критическая скорость вращения которого выше рабочего, называют жестким. Если критическая скорость вращения ниже рабочего, вал называют гибким.

В установках, рассчитанных на работу при изменяющейся в ши­роких пределах скорости вращения (к таким установкам относятся су­довые ГТУ). роторы, как правило, выполняют жесткими.

Роторы газовых турбин с одной-двумя ступенями иногда делают однодисковыми, консольными. Диск соединяется с валом при помощи болтов, шпилек или радиальных штифтов. Ротор многоступенчатой турбины изготовляют из нескольких дисков, сваренных между собой или собранных на стяжных болтах или шпильках.

На Рис. 34 показаны некоторые наиболее типичные конструкции роторов.

Консольный однодисковый ротор (Рис. 34, а) часто применяют в высокооборотных напряженных турбинах. Рабочее колесо обычно имеет форму диска равного сопротивления без центрального отверстия. В большинстве случаев он выполняется отдельно от вала, соединяется с валом болтами, шпильками или радиальными штифтами, обеспечивающими сохранение соосности при тепловых расширениях.

Для высокооборотного ротора многоступенчатой турбины широ­кое применение находит сварной ротор, состоящий из нескольких сплошных дисков (см. Рис. 34, б).

Рис. 34. Различные типы роторов газовых турбин

Часто многоступенчатый ротор выполняют в виде отдельных дисков (Рис. 34, в) собранных на стяжке 1, проходящей через цен­тральное отверстие. Сохранение соосности дисков при тепловых рас­ширениях обеспечивается радиальными шлицами 2, размещенными по окружности.

Барабанная конструкция ротора (Рис. 34, г) может применяться только в многоступенчатых турбинах при сравнительно низких окружных скоростях.

Цельнокованый ротор (Рис. 34, д) конструктивно достаточно прост.

 

Рабочие лопатки

Рабочие лопатки относятся к наиболее ответственным деталям газовой турбины и всей ГТУ. В газовых турбинах чаще всего применяются лопатки переменного профиля по высоте. С целью по­вышения прочности рабочих лопаток при их профилировании стре­мятся уменьшить площадь сечения профиля на периферии относи­тельного корневого сечения. Это позволяет уменьшить напряжения в лопатке от растяжения центробежными силами.

Ответственным узлом является крепление лопаток на роторе.

На Рис. 35 показаны различные виды крепления рабочих лопаток.

Рис. 35. Различные типы крепления лопаток на роторе а) - Т - образное; б) - грибовидное; в) - зубчатое; г) - вильчатое; д) - Лаваля; е) - елочное.

Одним из наиболее простых является Т - образное крепление (Рис. 35, а). В диске или барабане протачивают в тангенциальном (окружном) направлении паз, в котором набираются лопатки. Между двумя соседними лопатками в паз может устанавливаться так называемое промежуточное тело, обеспечивающее необходимое расстояние между ними.

Т - образное крепление обычно применяют для относительно ко­ротких лопаток, так как при большой центробежной силе в нем возни­кают чрезмерные напряжения. Наиболее опасные сечения крепления: Б - В - работает на растяжение, А - В - работает на смятие, Д - Г - работает на растяжение и изгиб.

Грибовидное крепление лопаток (Рис. 35, б), при котором лопатки вводятся на свои места в тангенциальном направлении.

Зубчатое крепление лопаток (Рис. 35, в). Лопатки также вводятся в паз в тангенциальном направлении. Зубцы выфрезеровываются как на хвостовой части лопатки 1. так и на промежуточном теле 2.

Вильчатое крепление лопаток (Рис. 35, г). Лопатки крепятся к диску плотно пригнанными заклепками, которые выполняются из вязкой стали.

Крепления лопаток типа Лаваль (Рис. 35, д) применяют при умеренных напряжениях и температурах.

Елочные крепления (Рис. 35, е) применяются при высоких напряжениях и температурах. В елочном креплении центробежная сила воспринимается полочками всех зубцов, что снижает напряжения.

На Рис. 36, в качестве примера, показано замковое соединение лопаток с зубчатом креплением.

Рис. 36. Рабочие лопатки с зубчатым креплением: 1 - замковая вставка; 2 - клин к замку; 3 - клиновая вставка.

Когда все лопатки поставлены на свои места в тангенциальном пазе ротора, устанавливают замковую вставку 1 и клиновую вставку 3. Затем вводят клин 2, а вставку 3 сверху расчеканивают. Лопатки прошиты двумя бандажными проволоками. У вершины они имеют утонение, что уменьшает опасность возникновения аварии в случае задевания лопаток о корпус.

 

Корпус

Корпуса современных газовых турбин выполняют, как правило, сварными или сварно-литыми, не имеющими горизонтального разъема, реже литой с горизонтальным разъемом. Для облегчения условий работы корпуса турбин делают двустенными. В этом случае внутренний корпус из жаростойких сталей и сплавов несет тепловую нагрузку, наружный корпус воспринимает разность давлений. Наружный корпус как экраном защищен внутренним корпусом от воздействия высоких температур, и дополнительно предусматривает водяное охлаждение.

Все элементы внутреннего корпуса имеют возможность свободных тепловых расширений во избежание возникновения значительных напряжений. Крепление корпуса турбины на фундаментной раме устроено так, чтобы происходило свободные тепловые расширения без нарушения центровки ротора и статора.

Для уменьшения радиального зазора над рабочими лопатками в корпусе иногда устанавливают специальные керамические обечайки. В результате приработки во время эксплуатации радиальный зазор оказывается небольшим.

В корпусе турбины крепятся сопловые аппараты и диафрагмы с сопловыми (направляющими) лопатками. Иногда сопловые лопатки крепятся непосредственно в корпусе - чаще в многоступенчатых турбинах реактивного типа при умеренных температурах

Диафрагмы обычно имеют сварную конструкцию. Они как и в паровых турбинах, могут выполняться из двух половин, которые под­вешиваются в корпусе вблизи разъема. Часто диафрагмы выполняют из отдельных сегментов, которые вводятся в фасонные пазы корпуса и могут свободно расширяться при нагреве.

 


Поделиться:



Последнее изменение этой страницы: 2019-04-01; Просмотров: 486; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь