Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Вивчення основних понять математичної логіки
Математи́чна ло́гіка — розділ математики, що вивчає мислення за допомогою числень, застосовуючи математичні методи та спеціальний апарат символів. Предметом математичної логіки є математичні теорії в цілому, які вивчаються за допомогою логіко-математичних мов. При цьому в першу чергу цікавляться питаннями несуперечливості математичних теорій, їх розв'язності та повноти. Математична логіка по суті є формальною логікою, що використовує математичні методи. Формальна логіка вивчає акти мислення (поняття, судження, умовиводи, доведення) з точки зору їх форми, логічної структури, абстрагуючись від конкретного змісту. Творцем формальної логіки є Арістотель, а першу завершену систему математичної логіки на базі строгої логіко-математичної мови — алгебру логіки, — запропонував Джордж Буль (1815–1864). Логіко-математичні мови і теорія їх смислу розвинуті в роботах Готлоб Фреге (1848–1925), який ввів поняття предикату і кванторів. Це надало можливість застосувати логіко-математичні мови до питань основ математики. Виклад цілих розділів математики на мові математичної логіки та аксіоматизація арифметики зроблені Джузеппе Пеано (1858–1932). Грандіозна спроба Г.Фреге та Бертран Рассел (1872–1970) зведення всієї математики до логіки не досягла основної мети, але привела до створення багатого логічного апарату, без якого оформлення математичної логіки як повноцінного розділу математики було б неможливе. На межі 19 століття-20 ст. були відкриті парадокси, зв'язані з основними поняттями теорії множин (найвідомішими є парадокси Георг Кантор та Б. Рассела). Для виходу з кризи Л. Брауер (1881–1966) висунув інтуїціоністську програму, в якій запропонував відмовитися від актуальної нескінченності та логічного закону виключеного третього, вважаючи допустимими в математиці тільки конструктивні доведення. Інший шлях запропонував Давид Гільберт (1862–1943), який в 20-х роках 20 ст. виступив з програмою обґрунтування математики на базі математичної логіки. Програма Гільберта передбачала побудову формально-аксіоматичних моделей (формальних систем) основних розділів математики та подальше доведення їх несуперечливості надійними фінітними засобами. Несуперечливість означає неможливість одночасного виведення деякого твердження та його заперечення. Таким чином, математична теорія, несуперечливість якої хочемо довести, стає предметом вивчення певної математичної науки, яку Давид Гільберт назвав метаматематикою, або теорією доведень. Саме з розробки Д. Гільбертом та його учнями теорії доведень на базі розвинутої в роботах Готлоб Фреге та Бертран Рассела логічної мови починається становлення математичної логіки як самостійної математичної дисципліни. Сфера застосування математичної логіки дуже широка. З кожним роком зростає глибоке проникнення ідей та методів математичної логіки в інформатику,обчислювальну математику, лінгвістику, філософію. Потужним імпульсом для розвитку та розширення сфери застосування математичної логіки стала поява електронно-обчислювальних машин. Виявилося, що в рамках математичної логіки вже є готовий аппарат для проектування обчислювальної техніки. Методи і поняття математичної логіки є основою, ядром інтелектуальних інформаційних систем. Засоби математичної логіки стали ефективним робочим інструментом для фахівців багатьох галузей науки і техніки. Логіка в інформатиці — це напрям досліджень та галузей знань, де логіка застосовується в інформатиці та штучному інтелекті. Використання логіки дуже ефективне в цих областях. На відміну від природничих наук, комп'ютерні науки отримали великий стимул від широкої і безперервної взаємодії з логікою. Особливу роль у комп'ютерних науках відіграють доказові методи розробки алгоритмів і програм з доказами їхньої правильності. Тестування програм може виявити наявність помилок у програмах, але не може гарантувати їх відсутність. Гарантії відсутності помилок в алгоритмах і програмах можуть дати тільки докази їх правильності. Алгоритм не містить помилок, якщо він дає правильні розв'язки для всіх допустимих даних. Серйозною проблемою для комп'ютерних наук та інформатики є наявність помилок в алгоритмах і програмах, що публікуються в підручниках і навчальних посібниках, а також невміння викладачів і вчителів інформатики виявляти і виправляти помилки в алгоритмах і програмах, складених учнями. Єдиний шлях для подолання цих проблем-це вивчення систематичних методів складання алгоритмів і програм з одночасним аналізом їх правильності в рамках доказового програмування з самого початку навчання основам алгоритмізації і програмування. Складність для викладачів і програмістів полягає в тому, що вони повинні вміти писати не тільки алгоритми і програми, а й докази правильності своїх алгоритмів і програм. На жаль, зараз це не вміють робити ні математики, ні програмісти. В результаті програмісти пишуть програми з великим числом помилок, які вони не можуть ні виявити, ні виправити. Масоване тестування програм на ЕОМ приносить програмістам безперечну користь, проте не дає гарантій повного позбавлення від помилок. Практика застосування та вивчення доказових методів програмування показала, що ця технологія цілком доступна студентам математичних факультетів, яким цілком під силу написання доказів правильності алгоритмів, після перевірки та тестування програм на ЕОМ. Найбільший ефект в освоєнні технологій доказового програмування спостерігається в олімпіадах з інформатики та програмування, де переможцями та призерами стають ті студенти, які освоїли техніку тестування програм на ЕОМ і складання алгоритмів і програм без помилок. Логіка - наука про закони мислення. Зародження логіки можна віднести до 6 ст. до н. е. (Фалес, Парменід, Піфагор). Загальні принципи логічних міркувань розвинув Платон. Основоположником логіки як цілісної науки є Аристотель. Саме Аристотель виклав закони логічного виведення, розробив аксіоматичний метод, запропонував першу формально-аксіоматичну систему логіки - силогістику, заклав основи модальної логіки. Після Аристотеля істотний крок в розвитку логіки зроблений тільки в 17 ст. - Г. Лейбніц (1646-1716) розвинув ідею створення універсального логічного числення, яка далеко обігнала свій час. Подальші успіхи логіки пов'язані з іменами філософів, логіків і математиків 19 та 20 ст. Математична логіка є наукою про закони математичного мислення. Предметом математичної логіки є математичні теорії в цілому, які вивчаються за допомогою логіко-математичних мов. При цьому в першу чергу цікавляться питаннями несуперечливості математичних теорій, їх розв'язності та повноти. |
Последнее изменение этой страницы: 2019-04-10; Просмотров: 273; Нарушение авторского права страницы