Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Подземные теплоаккумуляторы солнечной энергии



 

Аккумулирование солнечной энергии в подземных теплоаккумуляторах (ПТА) разрабатывается на основе следующих способов:

· глубокие скважины с закачкой воды;

· глубинные скважины с барботированным слоем жидкости;

· теплообменная твердая засыпка в изолированной подземной полости;

· система концентрических труб, продуваемых воздухом в теплоизолированной подземной полости.

 

Разработки подземных теплоаккумуляторов (ПТА) солнечной энергии ведутся практически во всех развитых капиталистических странах. Заслуживают внимания достижения в этой области в Швеции. В рамках национальной программы по освоению энергетических ресурсов разработан проект теплоснабжения группы коттеджей с помощью солнечной энергии и теплонасосных установок, использующих тепло нагретых грунтовых вод. Система спроектирована для условий района г. Ландскруна (Южная Швеция). Первоначально она намечалась для краткосрочного аккумулирования тепла, в последующем - для сезонного. Для этого планируется проведение экспериментов с целью определения возможности создания сезонного подземного теплоаккумулятора (ПТА). В скальных породах на глубине 30 м (Швеция) сооружен сезонный подземный теплоаккумулятор солнечной энергии емкостью 100 тыс.м3. Его годовая энергоемкость 5500 МВт•ч, что эквивалентно 550 т мазута. Подземный теплоаккумулятор имеет кольцевую форму, его высота 30 м, наружный и внутренний диаметры, соответственно, 75 и 35 м. С помощью солнечной энергии отапливается 550 жилищ. Общая поверхность коллекторов 4,2 тыс.м2. Строительные работы длились 7 мес., в том числе самого подземного теплоаккумулятора - 4 мес. Летом и осенью в ПТА поступает нагретая вода до 90°С, а забирается из него с температурой 65-70°С. Среднегодовой КПД 30%, потери тепла неизолированного подземного теплоаккумулятора в конце первого года эксплуатации составят 70%, а через 4 года - 32%, через 10 лет - не превысят 28% (остывание за 25 ч составляет 10°С). Стоимость тепла от подземного теплоаккумулятора эквивалентна стоимости тепла от теплосети. В Швеции разрабатывается проект сезонного ПТА, включающий водоем и подземные горные выработки объемом 700 тыс. м3. Нагретая летом вода будет закачиваться в подземный теплоаккумулятор. Теплоаккумулирующая энергоемкость составит 11-170 ГВт•ч. В отопительный период вода из ПТА поступает в теплосеть; при падении температуры воды ниже 6°С она будет использована в качестве источника тепла для теплонасосных установок.

Большой интерес проявляется к подземному аккумулированию в водонасосных горизонтах. Он настолько велик, что этим уже занимается большое число стран (Швейцария, Франция, ФРГ, США, Япония, Швеция). В Швейцарии сооружен АТ с использованием водоносного горизонта на глубине 36 м. Схема предполагает возможность аккумулирования солнечной энергии или сбросного тепла с температурой воды от 30 до 100 С, которая предназначается для отопления, горячего водоснабжения и кондиционирования воздуха в жилых домах. Во Франции проведены экспериментальные исследования по закачке воды с температурой до 180°С в водоносный горизонт на глубине 50 м, в результате которых намечены направления дальнейших исследований и масштаб внедрения.

В штате Аляска (США) демонстрируется экспериментальная установка, которая производит тепло при 90 С, в штаге Миннесота - при 150 С. В штате Алабама были проведены два цикла аккумулирования и восстановления тепла. В первом цикле закачали 55 000 м3 воды с температурой 55 С на 48 сут, а затем откачали, коэффициент восстановления тепловой энергии составил 67%. Во втором цикле было закачано 58 000 м3, коэффициент восстановления тепла возрос до 74%. Эти и другие эксперименты подтверждают их эффективность. Отмечается, что проблема закупорки пор и трещин не возникает, если используется дублетная схема скважин (нагнетательная и водозаборная), а рассеяние тепла сохраняется на приемлемом уровне. В частности, к таким выводам пришли в Японии и США.

Исследования и разработки показывают, что подземное аккумулирование тепловой энергии можно организовать по-разному в зависимости от принципа и способов аккумулирования. В первом случае в качестве аккумулирующей среды могут использоваться водонасыщенные пласты, вода, твердая порода и поверхностное поглощение. Во втором - природные формации (водоносные горизонты, каверны, пустоты и т.п.) и искусственные системы (выработки, шурфы, котлованы, емкости, заполненные твердыми частицами, зоны трещиноватости, образованные в результате взрыва или гидроразрыва).

Для подземного аккумулирования тепловой энергии важным является отработка технологии хранения тепла. Уже первые зарубежные результаты показали, что без особых предосторожностей безопасность и надежность не будут обеспечены при температурах выше 200 С и нет уверенности, что это легко разрешимо для температурного диапазона от 100 до 200 С. Обнаружено, что тепловые потери являются неприемлемыми, когда горизонты состоят из породы с крупной гранулометрией (диаметр >1 дм). Это характерно, например, для твердых известняков. Слои с каменными нагромождениями, каналы с большой проницаемостью, континентальные и дельтовые образования пригодны для подземного аккумулирования тепловой энергии. Существует ограничение по закачке воды, взятой из поверхностного источника или из другого водоносного слоя из-за несовместимости воды. Не решен вопрос об уровне температуры хранения тепла. Данные свидетельствуют, что выгодно поддерживать температуру как можно выше. Например, во Франции эксперименты показали, что повышение температуры хранения со 100 до 200°С позволяет в 2-2,5 раза больше переносить тепла в 1 м3 воды, а гидравлический дебит выше почти в 2 раза при одной и той же энергии откачки воды. Однако использование повышенных температур противоречит идее геометрического дублета, так как с ростом температуры на одну горячую скважину требуется несколько холодных нагнетательных скважин.

Одним из практических параметров является КПД подземного аккумулирования тепловой энергии, который представляет собой отношение между количеством возвращаемого и запасаемого тепла. Его значение зависит от уровня падения температуры. Предположительно считается, что лучше хранить тепло при более высокой температуре, что допускает более высокое падение температуры. Однако падение на 40—50°С за несколько месяцев делает непригодным возвратное тепло для получения электроэнергии. Эксперименты и расчеты дают основание на достижение КПД на уровне 75-80%.

С точки зрения практической реализации сеть подземной воды и обогреваемая сеть должны быть обязательно разделены через теплообменник из-за химической несовместимости и независимых давлений воды в каждой из них. В тоже время нельзя допускать вскипания воды в скважинах и в водоносном горизонте во избежание накипи, разрушения приставок и самого устройства, а особенно для устранения деградации теплового уровня, который практически не восстанавливается. Для этого должны предусматриваться соответствующие регулирующие устройства по поддержанию давления во время хранения, запуска или в периоды эксплуатации с малым дебитом.

Для проектирования и создания систем аккумулирования тепловой энергии должны быть получены достоверные данные о зависимости удельной проницаемости от температуры. Имеются сведения о заметном ее падении с ростом температуры. Необходимо выяснить проблему аккумулирования тепловой энергии в пористой среде с учетом растворимости и выпадения осадков при изменении температуры воды. Вода в пласте находится почти всегда в химическом равновесии с основой пласта, а изменение температуры вызывает изменение химических равновесий в процессе аккумулирования и рекуперации тепла. Очевидно, что нельзя создать эффективные ПТА, не располагая образцами воды и грунта. Даже в тех случаях, когда вода и не содержит много минералов, существуют явления растворимости и выпадения осадков, и они могут быть источником аварии. Поэтому должны быть приняты меры, исключающие крупные выпадения осадков вблизи скважины, а также обеспечены условия работоспособности теплообменников и насосов.

Должны быть изучены вопросы безопасности при создании подземных аккумуляторов тепловой энергии с учетом прогревания грунтовых вод (теплопроводность, конвекция, деривация, динамические перемещения и перемещения из-за неравномерности прогревания поверхности и близлежащих участков, опасность резких перемещений грунта при землетрясениях, образование трещин с выходом на поверхность) и другие аспекты (глубина расположения аккумуляторов, местные аномалии по глубине и плотности и т.п.).

Цель исследований и разработки по созданию подземных аккумуляторов тепловой энергии сводится к выявлению параметров, воздействующих на работу водоносных пластов и близлежащих участков, включая проницаемость, механизмы энергетических потерь, механические и гидравлические характеристики, экологические аспекты и работоспособность оборудования. При использовании горных выработок или полостей должны быть изучены вопросы воздействия теплоносителя в зависимости от параметров (давление, температура) на приконтурные зоны, выявлены условия возникновения разрушения слагающих массивов, потери устойчивости при термоциклировании. Должны быть разработаны методы расчета при определению термокинетических параметров горных пород и разработанной горной массы в условиях длительного воздействия давления и высоких градиентов температур. Одновременно следует изыскивать новые решения создания эффективных ПТА. Одним из таких решений является ПТА, выполненный в виде подземной полости, облицованной кирпичной кладкой, в которую помешается резервуар из резины или из пластмассы. Между ними и стенками полости образуется пространство, заполняемое пенопластом. Резервуар перед монтажом накачивается воздухом или газом. Снаружи предусматриваются дистанционирующие элементы, предохраняющие его от соприкосновения со стенками и днищем полости. Во избежание его повреждения от заливочной массы он постепенно заполняется жидкостью с плотностью, равной плотности заливочной массы, причем уровни жидкости и массы выдерживаются одинаковыми.

Задачей исследований по разработке подземного аккумулирования тепловой энергии должно быть изучение вышеперечисленного комплекса проблемных и инженерных вопросов с целью развития данного направления для аккумулирования солнечной энергии, в том числе и в сочетании с другими источниками первичной энергии. Таким образом, начиная с середины 70-х годов развернулись исследования по отработке различных технологий теплоаккумулирования и разработке емкостей для хранения накопленной энергии. Наибольшие успехи достигнуты в освоении теплоемкостных АТ. Обобщения ранее накопленного опыта создания и эксплуатации теплоаккумулирующих устройств на традиционных энергоустановках существенно облегчили их создание для СЭУ. Учитывая специфику СЭУ, а также недостатки и несовершенство ранее созданных АТ теплоемкостного типа, была проведена серия лабораторных экспериментов по изучению стабильности ТАМ. Успешно прошли проверку ТАС в условиях, близких к промышленным, что в конечном итоге определило пути их совершенствования. Одновременно выявились трудности в освоении технологии аккумулирования тепла высокого потенциала в АТ теплоемкостного типа, а также в технологии на основе фазовых превращений и обратимых химических реакций.

Для АТ основное ограничение на пути серийного производства является их относительно высокая стоимость. В этой связи предстоит изыскивать решения, основанные на использовании недорогих ТАМ, позволяющих добиться снижения их стоимости. Для водяных АТ основным ограничением является рабочее давление в емкости для хранения тепла. Поэтому заслуживает внимания создание комбинированных теплоемкостных систем с использованием органических ТАМ, широко доступных природных материалов (камень, гравий и т.п.).

В области освоения технологии аккумулирования тепла проведенные эксперименты и теоретические изыскания определили ряд проблемных вопросов, которые предстоит изучить с тем, чтобы было возможным создать недорогие АТ, но эффективные с точки зрения передачи тепла от теплоприемника к потребителю энергии через этап ее хранения в ТАМ, размещенном в емкости АТ.

В области термохимических АТ имеются существенные трудности, но их высокая энергоемкость позволяет продолжить экспериментальные работы особенно с использованием обратимых химических реакций (де)гидратации гидратных солей.

Для аккумулирования тепла высокого потенциала в интервале 250-1000°С заслуживают внимания АТ в первую очередь на основе карбонатов кальция и магния, гидрооксида кальция и магния, сульфатов железа и серного ангидрида.

Перспективным направлением аккумулирования солнечной энергия считаются ПТА. В комбинации с традиционными источниками энергии они могут найти применение как для краткосрочного, так и для сезонного хранения тепла. Опыт экспериментальных установок на основе ПТА в ряде зарубежных стран, особенно в Швеции, показал, что этот метод аккумулирования тепла требует тщательного изучения.

 

ЗАКЛЮЧЕНИЕ

 

Опыт эксплуатации первых экспериментальных СЭС показал их достаточную надежность. На отдельных СЭС показатели превзошли проектные. Например, в Барстоу (США) при максимальной проектной мощности 10 000 кВт на испытаниях зарегистрирована максимальная мощность 11 400 кВт.

Единичная мощность СЭС башенного типа лимитируется главным образом высотой башни. При высоте башни 250-300 м мощность единичного модуля СЭС может достигать 100 000 кВт.

Таким образом, технический барьер на пути создания крупных СЭС промышленного уровня мощности сегодня можно считать преодоленным. Однако предстоит преодолевать другой, не менее трудный барьер - экономический. Он обусловлен тем, что построенные в последние годы СЭС при современных ценах на топливо неконкурентоспособны с традиционными ТЭС и АЭС. Необходимо снизить удельные капитальные затраты на их сооружение по крайней мере на порядок. Одной из причин высоких удельных затрат на сооружение СЭС является их уникальность, при постройке которых пока не используются преимущества серийного специализированного производства.

Предстоит разорвать заколдованный круг: пока СЭС обходятся дорого, нельзя развернуть специализированное серийное производство оборудования, а пока не будет организовано такое производство - оборудование для СЭС будет обходиться многократно дороже. Для этого важно выявить возможности повышения экономической эффективности СЭС. Они сводятся в основном к следующему: рациональное размещение СЭС в районах с высокой плотностью солнечного излучения, оптимизация поля гелиостатов с преимущественным расположением зеркал в наиболее эффективной северной части поля, выбор оптимальной высоты башни, повышение параметров рабочего тела, использование солнечных приемников полостного типа, оптимизация систем аккумулирования.

Важным средством повышения эффективности СЭС является применение и таких широко известных и хорошо зарекомендовавших себя способов, как промежуточной перегрев пара и регенеративный подогрев питательной воды.

Использование результатов исследований только в перечисленных направлениях позволяет увеличить количество энергии, получаемой с каждого квадратного метра зеркальной поверхности гелиостатов, в 5,5-6,5 раза по сравнению с первой СЭС-5, построенной в Крыму.

Принимая во внимание тенденцию неуклонного удорожания первичных топливно-энергетических ресурсов и имеющиеся реальные возможности снижения удельных затрат при переходе на серийное специализированное производство оборудования, можно ожидать, что уже в обозримой перспективе СЭС промышленного уровня мощности могут стать экономически эффективными.

Научно-технический прогресс в этой области связан с дальнейшими исследованиями в целях совершенствования тепловых технологических схем, выбором эффективных теплоносителей, в том числе для систем теплового аккумулирования, разработкой головных образцов и совершенствованием технологии изготовления нестандартизированного гелиотехнического оборудования, созданием эффективных систем автоматического управления технологическими процессами СЭС.

Важным этапом на пути развития солнечной электроэнергетики является освоение полномасштабного опытно-промышленного модуля СЭС мощностью до 100 000 кВт. На первом этапе вряд ли целесообразно строительство автономных СЭС. Более оправданным является создание солнечных пристроек к действующим или строящимся ТЭС. В этом случае отпадает необходимость в сооружении машинного зала, силовой установки, электротехнического хозяйства и других общестанционных сооружений, что позволит создать крупномасштабные СЭУ с меньшими издержками и при более благоприятных условиях. В то же время полученная в солнечном приемнике энергия может быть полезно использована в цикле ТЭС как для выработки дополнительной энергии, так и для повышения топливной экономичности ТЭС. Накопленная в аккумуляторах горячей воды солнечная энергия может эффективно заменить регенеративной подогрев питательной воды в часы максимальных нагрузок ТЭС.

Такой путь позволит выиграть время и ускорит решение широкого комплекса научно-технических проблем создания экономически эффективных СЭС. Одновременно при этом могут постепенно решаться и вопросы создания материально-технической и машиностроительной базы для развертывания в перспективе серийного производства оборудования для СЭС. Однако и в этом случае из-за ограниченного числа часов солнечного сияния целесообразно комбинированное использование СЭС совместно с гидравлическими, ветроэлектрическими, гидроаккумулирующими, воздушно-аккумулирующими или геотермическими электростанциями.

За рубежом также продолжаются интенсивные исследования в области крупномасштабной солнечной энергетики. Когда в США было начато строительство очередной СЭС мощностью 43 000 кВт в Южной Калифорнии, удельные капитальные вложения в нее были уже втрое ниже, чем в станцию мощностью 10 000 кВт, построенной в Барстоу в 1983 г.

Как бы ни была сложна проблема создания крупных экономически эффективных СЭС, нет непреодолимых препятствий на пути ее решения. Наступила пора создания материально-технической базы для планомерного освоения неиссякаемой по потенциальным ресурсам и экологически чистой солнечной энергии.

 

· Оптические системы СЭС

· Тепловые схемы СЭС

· Комбинированные СЭС

 



 

 



ПОДМЕНЮ СЭС

· СЭС

· Виды СЭС

· Типы СЭС

· Плюсы и минусы СЭС

· Фотоэлементы

· Солнечные элементы

· Аэростатные СЭС

· Мобильные СЭС

· Солнечная энергетика

· Солнечная термальная энергетика

· Обзор технологий СЭС

· Развитие электроустановок СЭС

· Техника солнечной энергии

· Оптические системы СЭС

· Тепловые схемы СЭС

· Комбинированные СЭС

· Теплоаккумулирование на СЭС

· Использование энергии Солнца

· Существующие гелиоустановки

· Преобразователи солнечной энергии

· Фотоэлектрические преобразователи (ФЭП)

· Гелиоэлектростанции

· Солнечный коллектор

· Химические преобразователи солнечной энергии

· Космические солнечные электростанции

· Автомобиль на солнечных батареях

· Солнечная энергетика в России и на Украине

· Изобретения, основанные на солнечной энергии

· Плюсы и минусы солнечной энергетики

· Солнце и солнечная энергия

· Использование солнечной энергии



Содержание

Введение

Глава 1. Физические основы для создания теплового аккумулятора

Глава 2. Жидкостные тепловые аккумуляторы

Глава 3. Тепловые аккумуляторы с твёрдым теплоаккумулирующим материалом.

Глава 4. Аккумуляторы тепла, основанные на фазовых переходах.

Глава 5. Конструкция ТА фазового перехода.

Введение

Сейчас во всем мире идет повсеместная экономия сырьевых ресурсов. Ученые многих стран пытаются решить эту проблему различными методами, в том числе и с помощью применения альтернативных источников энергии. К ним можно отнести такие виды, как использование водных ресурсов малых рек, морских волн, гейзеров и даже отходов производства и бытового мусора.

Но возникает проблема сохранения полученной энергии. Например, тепловую энергию, полученную в солнечной водонагревательной установке, можно сохранить в тепловом аккумуляторе, и использовать в темное время суток.

Тепловые аккумуляторы известны человечеству с глубокой древности. Это и горячая зола, куда наши предки закапывали продукты для их тепловой обработки, и горячие камни, которые накаливали на огне. Утюг, который нагревают на огне, а затем гладят им,— тепловой аккумулятор. Накаленные камни, которые мы поливаем водой (квасом, пивом) в парилках,— тоже аккумулятор тепла. Термобигуди, которые кипятят в воде, а затем с их помощью делают прическу,— тоже тепловые аккумуляторы, причем достаточно совершенные, основанные на аккумулировании плавлением.

Итак, каждое тело, нагретое выше температуры окружающей среды, можно считать аккумулятором тепла. Это тело способно, охлаждаясь, производить работу, а, следовательно, обладает энергией.


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 377; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.039 с.)
Главная | Случайная страница | Обратная связь