Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Принято условно считать, что несовершенствами кристаллического строения являются дефекты микроскопических размеров.
Некоторые типы дефектов показаны на рисунке. Дефекты строения кристаллической решетки: Вакансия; Межузельный атом; Примесный атом замещения; Примесный атом внедрения; 5 – краевая дислокация; 6 – малоугловая граница; 7 – моноатомный слой примесных атомов (кластер); Большеугловая граница Точечные дефекты Характерным видом точечных дефектов являются вакансии, межузельные атомы (так называемые собственные или структурные точечные дефекты), а также примесные атомы внедрения и замещения. Вакансии представляют собой узлы решетки, в которых отсутствуют атомы. Межузельные атомы являются как бы избыточными, лишними атомами и располагаются в междоузлиях (микропорах). Аналогичные позиции занимают примесные атомы внедрения, образуя тем самым раствор внедрения. Примесные атомы замещения находятся в узлах кристаллической решетки, занимая места атомов основного компонента, т.е. образуют твердый раствор замещения. В последнем случае, строго говоря, роль точечных дефектов играют такие примесные атомы, которые имеют размер, отличный от размера основных атомов, образующих решетку. Вакансии и примесные атомы замещения могут находиться в любых узлах решетки. Примесные атомы внедрения располагаются не в любом междоузлии, а преимущественно в таких микропорах, где для них имеется достаточно свободного пространства. Так, атомы внедрения в металлах с кубической решеткой предпочтительно размещаются в октаэдрических порах. Появление точечных дефектов вызывает упругие искажения в кристаллической решетке. Из математической теории упругого поля непрерывной среды следует, что напряжение и деформация вокруг такого центра возмущения решетки убывают пропорционально 1/r2 (где r - расстояние). Это означает, что упругие искажения, вызываемые точечными дефектами, быстро затухают по мере удаления и только на расстоянии 1-2 атомных диаметров от центра дефекта создаются заметные смещения соседних атомов из равновесных положений. При оценке роли структурных точечных дефектов полезно отметить, что наибольшие искажения решетки вносятся межузельными атомами. Как результат - энергетические затраты на их образование (энергия активации) в 3-4 раза выше, чем для вакансий. Отличительной особенностью точечных дефектов является то обстоятельство, что их трудно наблюдать непосредственно. Поэтому обнаруживать и изучать их приходится в основном по тому влиянию, которое они оказывают на физические свойства кристалла. Вторая особенность этих несовершенств состоит в том, что их концентрация может быть значительной даже в кристалле, находящемся в термодинамическом равновесии. Каждой температуре соответствует определенная равновесная концентрация точечных дефектов, величина которой меняется от температуры по экспоненциальному закону:
C = n/N = exp( - Q/kT), где n - число точечных дефектов; N - число атомов; Q - энергия, необходимая для образования 1 моля точечных дефектов; k - константа Больцмана и Т- температура. Появление точечных дефектов в кристалле может быть результатом тепловых флуктуаций. Под их воздействием атом, преодолев энергетичеcкий барьер, может перейти в междоузлие. В таком случае происходит образование сразу двух точечных дефектов - вакансии и межузельного атома. Такая комбинация " вакансия-межузельный атом" называется парным дефектом Френкеля. Если же атом, покинувший узел, окажется на свободной поверхности кристалла, то в решетке сохраняется только один дефект - вакансия. Такой дефект принято называть дефектом Шоттки. Кроме точечных дефектов, возникших в результате тепловых флуктуаций, могут появиться несовершенства и иного происхождения. Один из способов получения избыточного (для данной температуры) количества точечных дефектов состоит в резком охлаждении от более высокой температуры (закалке). Другой способ создания избыточных дефектов заключается в сильной деформации кристалла, например ковкой, прокаткой или волочением. Хотя решетка при этом по-прежнему сохраняет в основном свою кристаллическую природу, при такой обработке возникают многочисленные дефекты структуры, в том числе и точечные. Наконец, увеличение количества точечных дефектов может быть получено в результате радиационного облучения металлов частицами с высокой энергией. Быстрые частицы соударяются с атомами решетки и выбивают их из положения равновесия, образуя при этом дефекты по Френкелю. В этом случае количество дефектов зависит не от температуры, а от природы кристалла и энергии бомбардирующих частиц. С помощью такого облучения могут достигаться заметные концентрации " выбитых" атомов, что приводит к существенному изменению свойств. |
Последнее изменение этой страницы: 2019-04-09; Просмотров: 287; Нарушение авторского права страницы