Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Предельные гладкие калибры: скобы и пробки



Контроль размеров элементов деталей с помощью предельных гладких калибров сводится к следующему выполняют по диаметру, близкому к наименьшему предельному размеру контролируемого отверстия Dmin, а другой калибр - непроходной (НЕ) - по диаметру, близкому к наибольшему предельному размеру отверстия Dmax.

Вывод о годности детали, когда действительный размер контролируемого отверстия находится в пределах заданного поля допуск делают на основании того, что калибр ПР должен проходить, калибр НЕ не должен проходить в контролируемое отверстие.

Для контроля валов изготавливают два предельных калибра-скобы. Калибр-скоба ПР имеет размер, близкий к наибольшему предельному размеру вала dmax, а калибр-скоба НЕ - размеру близкий к наименьшему предельному размеру вала dmin.

Если калибр-скоба ПР свободно пройдет по диаметру вала, а калибр-скоба НЕ не пройдет, то деталь признается годной по контролируемому размеру вала.

Любое нарушение названных условий годности при контроле отверстий и валов деталей предельными калибрами, например' калибр-скоба ПР не проходит по валу, а калибр-пробка НЕ проходит в контролируемое отверстие, является основанием для вывода о негодности (исправимый или неисправимый брак) деталей по контролируемым размерам. На ранних этапах развития взаимо-заменяемости, когда еще не было системы допусков и посадок, контроль осуществлялся с помощью нормальных калибров.

31) Измерение и маркировка калибров;

Калибрами называются бесшкальные измерительные инструменты, предназначенные для проверки размеров, формы и взаимного расположения поверхностей деталей. Калибры относятся к одномерным инструментам, так как измерительные части калибров в процессе измерения не меняются.

Калибры подразделяются на две группы: нормальные и предельные.

Нормальные калибры изготовляются по номинальному размеру проверяемой детали и имеют измерительную часть, равную среднедопускаемому размеру измеряемой детали. Нормальный калибр должен входить в деталь с большей или меньшей плотностью.

Предельные калибры имеют размеры номинально равные предельным размерам измеряемой детали. Одна из сторон калибра соответствует наибольшему, а другая - наименьшему заданному предельному размеру. При измерении предельными калибрами проходная сторона должна входить в отверстие или надеваться на вал, а вторая сторона - непроходная - не должна входить в отверстие или надеваться на вал. Непроходная сторона калибра отличается от проходной стороны кольцевой выточкой на ручке или же меньшей длиной измерительной части. Непроходная сторона калибра делается укороченной, потому что она обычно не входит в проверяемое отверстие. С помощью предельных калибров определяют, вышли или не вышли действительные размеры деталей за установленные пределы.

32) Понятия о приборах с оптическим преобразованием;

Оптический прибор — конструктивным образом оформленная для выполнения конкретной задачи оптическая система, состоящая, по крайней мере, из одного из базовых оптических элементов. В состав оптического прибора могут входить источники света и приёмники излучения. В иной формулировке, Прибор называют оптическим, если хотя бы одна его основная функция выполняется оптической системой.

Оптическая система — совокупность оптических элементов (преломляющих, отражающих, дифракционных и т. п.), созданная для определённого формирования пучков световых лучей (в классической оптике), радиоволн (в радиооптике), заряженных частиц (в электронной и ионной оптике).

Оптическая схема — графическое представление процесса изменения света в оптической системе.

33) Средства измерения с электрическим преобразованием

Средство измерений – техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (а пределах установленной погрешности) в течение известного интервала времени.

Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы ("мультиметры") и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока.

34) Средства измерений с пневматическим преобразованием;

Пневматические измерительные приборы нашли широкое применение для контроля линейных размеров. Эти приборы обладают высокой точностью, позволяют производить дистанционные измерения в относительно труднодоступных местах, имеют низкую чувствительность к вибрациям. Пневматические бесконтактные измерения дают возможность контролировать легкодеформируемые детали и детали с малыми микронеровностями, способные повреждаться при механическом контакте, а также исключают износ измерительных поверхностей контрольных устройств, что, повышает точность и надежность контроля. Пневматические приборы сравнительно легко поддаются автоматизации,не требуют высокой квалификации обслуживающего персонала. Однако эти приборы обладают значительной инерционностью, снижающей их производительность.

35) Выбор средств измерений линейных размеров;

Средства измерения линейных размеров изделий выбирают с учетом следующих основных факторов: производственной программы; осо­бенностей конструкции изделия и точности его изготовления – допуска квалитета (IT), погрешности выбранного измерительного средства (ИС) и себестоимо­сти измерения. Допуск квалитета определяет общую допускаемую погрешность изготовления и размеров деталей и узлов машиностроительной продукции.

В условиях единичного производства специальная контрольно-изме­рительная оснастка не применяется, а поэтому контроль размеров из­делий производится преимущественно при помощи универсально-из­мерительных средств и приборов (штангенциркули, микрометры, индикаторные нутромеры и т. п.). При серийном производстве ос­новными средствами контроля размеров являются предельные ка­либры и шаблоны, а также полуавтоматические контрольные измери­тельные устройства.В мелкосерийном и единичном производстве преимуществен­но используют универсальные средства измерений, регулируемые калибры (скобы), поскольку применение специальных приспособ­лений и жестких калибров экономически невыгодно. Универсаль­ные средства используют для измерения различных геометрических параметров либо непосредственно, либо в сочетании с предметными столиками, плитами, стойками, штативами и другими дополнитель­ными приспособлениями.

36 . Единицы измерения углов и допуски угловых размеров;

В машиностроении угловые размеры встречаются довольно часто: фаски, штамповочные и литейные уклоны и т. п. Угловые размеры могут быть как независимыми, т. е. не связаны расчетными зависимостями с другими принятыми линейными или угловыми размерами, так и зависимыми - производными от других размеров. Для независимых угловых размеров ГОСТ 8908-81 устанавливает три ряда нормальных углов:Ряд 1: 0, 5, 15, 30, 45, 60, 90, 120°;Ряд 2: 0°30',1, 2, 3, 4, 6, 7, 8, 10, 20, 40, 75°;Ряд 3: 0°15', 0°45', ]°30', 2°3(Г, 9, 12, 18, 22, 25, 35, 50, 55, 65, 70, 80, 85, 100, ПО, 135, 150, 165, 180, 270, 360°.При выборе нормальных углов первый ряд следует предпочитать второму, а второй - третьему (как и для других рядов предпочтительных чисел).В качестве единиц измерения угла приняты:- в системе единиц, основанной на градусной мере, для отсчета угла используются градус, минута, секунда (градус (°) - угол, равный 1/360 полной окружности, угловая минута ('), равная 1/60 градуса, и угловая секунда ("),равная 1/60 угловой минуты);- в системе единиц, основанной на радиан ной мере, для отсчета угла используется радиан (радиан - угол между двумя радиусами одной окружности, вырезающими из нее дугу, длина которой равна длине радиуса). Долей радиана (рад) является микрорадиан (мкрад) (I мкрад = Ю"6 рад).

Допуски угловых размеров назначают по ГОСТ 8908-81. Допуском угла AT (первые буквы английских слов - angle tolerance - допуск утла) называется разность между наибольшим amix и наименьшим а^п предельными углами. Допуск угла назначается в зависимости от номинальной длины Lx меньшей стороны утла. Допуск утла может быть выражен:

- в угловых единицах радианной и градусной мер АТи (точное значение) и АТ'а (округленное значение допуска в градусной мере) (рис. 5.41, а);

- длиной противоположного отрезка на перпендикуляре к стороне угла на расстоянии от вершины АТЬ (рис. 5.41, я, в);

- допуском на разность диаметров в двух сечениях конуса на расстояние I между ними АТВ (рис. 5.41, б).

Расположение допуска на угловые размеры относительно номинального угла (а - номинальный угол)

37 . Элементы конуса и допуски углов конуса;

Конус – обобщенный термин, под которым в зависимости от конкретных условий понимают коническую поверхность, коническую деталь или конический элемент детали. В деталях конические поверхности часто стыкуются с цилиндрическими поверхностями на продолжении той же оси и имеют вид усеченного конуса с большим и меньшим основаниями. Под основаниями конуса понимают круговые сечения, образованные пересечением конической поверхности с плоскостями перпендикулярными оси и ограничивающими его в осевом направлении. Основной плоскостью называют плоскость поперечного сечения конуса, в котором задается номинальный диаметр конуса. Базовой плоскостью является плоскость, перпендикулярная оси конуса и служащая для определения осевого положения основной плоскости или осевого положения данного конуса относительно сопрягаемого с ним конуса. Базовая плоскость может совпадать или не совпадать с основной. Допуски углов призматических элементов с длиной меньшей стороны до 2500 мм нормированы ГОСТ 8908–81. Этот же стандарт регламентирует и допуски углов конусов с длиной образующей или оси до 2500 мм. АТα – «теоретический» допуск угла, выраженный в угловых единицах (в микрорадианах, градусах, минутах, секундах); АТ`α – округленное значение допуска угла в градусах, минутах, секундах. Например, если допуск АТ17 = 4о30`01`` (при интервале длин L1 до 10 мм), то соответствующий ему допуск АТ`α 17 равен 4о; АТh – допуск угла, выраженный в единицах длины (в микрометрах) как отрезок на перпендикуляре к номинальному положению короткой стороны угла, на расстоянии L1 от вершины этого угла; АТD – допуск угла конуса, выраженный в единицах длины (в микрометрах) и отсчитываемый по перпендикуляру к оси конуса как разность наибольшего и наименьшего допустимых диаметров в заданном нормальном к оси сечении конуса. Допуск задают на определенном осевом расстоянии L. Допуск АТh назначают на конусы, имеющие конусность более 1:3 в зависимости от длины L1. При больших значениях С и α АТD = АТh /cos(α/2).Допуски углов конусов назначают в зависимости от длины конуса L вдоль оси (для конусов с конусностью не более 1:3), а в остальных случаях – от длины образующей L1

38 . Посадки конических соединений;

Установлены посадки с зазором, с натягом и переходные. По способу фиксации взаимного осевого расположения сопрягаемых конусов посадки разделяются на посадки с фиксацией путем совмещения конструктивных элементов конусов (базовых плоскостей); посадки с фиксацией по заданному осевому смещению конусов и посадки с фиксацией по заданной силе запрессовки (посадки с натягом).Первые два типа посадок нужно назначать в системе отверстия с полями допусков сопрягаемых конусов одинакового квалитета. Подвижные посадки применяют в узлах, где необходимо регулировать зазор между сопрягаемыми деталями (например, соединения конусной шейки шпинделя станка с конусными вкладышами подшипника скольжения).

39 Обозначение гладких конических соединений на чертежах;

Обозначение гладких конических соединений на чертежах нормируется ЕСКД по ГОСТ 2.320-82:

- при посадке с фиксацией путем совмещения конструктивных элементов сопрягаемых конусов размеры, определяющие характер соединения на сборочном чертеже, могут быть указаны только как справочные

- при посадке с фиксацией по заданному осевому расстоянию Zpf между базовыми плоскостями сопрягаемых конусов должен быть нанесен размер, определяющий расстояние между базовыми плоскостями, заключенный в прямоугольную рамку

- при посадке с фиксацией по заданному взаимному осевому смещению сопрягаемых конусов от их начального положения должен быть указан размер осевого смещения, а начальное положение конусов отмечается штрих пунктирной линией с двумя точками

- при посадке с фиксацией по заданному усилию запрессовки, прилагаемому в начальном положении сопрягаемых конусов, заданное усилие запрессовки указывается в технических требованиях "Усилие запрессовки Fi = ... Н".

40. Средства измерений углов и конусов;

 Угловые меры -изготавливают в виде прямых призм и применяют для контроля углов и градуировки угломерных инструментов и угловых шаблонов.Угловые меры выпускают в виде наборов с градацией углов через 2°, 1°,15′ и различными номинальными значениями углов. Изготавливают угловые меры четырех классов точности (00, 0, 1, 2) и аттестуют на разряды. Угловые меры могут притираться друг к другу, но их сцепление менее надежно, чем у плоскопараллельных концевых мер длины, поэтому блоки угловых мер соединяют друг с другом при помощи специальных приспособлений.Для контроля и разметки прямых углов (90 °) предназначены проверочные угольники (рис. 1.20), которые применяют также для контроля взаимного расположения поверхностей деталей при сборке. Изготавливают угольники следующих типов УЛ, УЛП, УЛШ, УЛЦ, УП, УШ.

Угольники типов УЛ, УЛП и УЛШ предназначены для точных лекальных работ, они имеют две острые рабочие грани.

Угольники типа УП и УШ используют при слесарной сборке, обработке и ремонте.

Угольники типа УЛЦ представляют собой отрезок вала с торцами, перпендикулярными образующей цилиндрической поверхности. Эти угольники используют для проверки других угольников, так как они позволяют получить точное значение угла 90°.

Для контроля углов методом непосредственной оценки в машиностроении широко применяют угломеры с нониусом. Эти угломеры выпускают двух типов: УН — для измерения наружных и внутренних углов и УМ — для измерения только наружных углов

Угломер типа УН состоит из основания 2 с нанесенной по окружности градусной шкалой, которое жестко соединено с линейкой 3. Линейка имеет снаружи доведенную измерительную поверхность. По основанию 2 перемещается сектор 5 с нониусом 1 и стопором 4. К сектору крепят угольник 6 при помощи державки 9. К угольнику 6 крепят съемную линейку 7 при помощи державки 8.

Угломер типа широко применяется при обучении слесарному делу.При работе с угломером типа УМ необходимо:

• определить способ измерения угла (с использованием угольника или без него);

• убедиться в плавности перемещения сектора угломера;

• убедиться в точности установки угломера на ноль;

• при измерении прочно удерживать угломер за корпус;

• измерительная поверхность должна плотно прилегать к поверхности детали (без просвета и перекоса);

• обратить внимание на достигаемую точность измерений, которая выбита на нониусе.

41.Параметры метрических резьб;

Основными параметрами профиля и резьбы в целом, непосредственно влияющими на прочность и свинчиваемость резьбового соединения и, таким образом, определяющими взаимозаменяемость деталей резьбового соединения, являются:

наружный диаметр болта d и гайки D; Этот диаметр является

номинальным диаметром резьбового соединения. внутренний диаметр болта d1 и гайки D1; средний диаметр болта d2 и гайки D2;

шаг резьбы P ( для многозаходной резьбы ход резьбы Ph= P·n,

где n – число заходов);

угол профиля резьбы ?, равный 60о.

Номинальные размеры по наружному, внутреннему и среднему диаметрам, шаг и угол профиля одинаковы для наружной резьбы ( болта ) и внутренней резьбы ( гайки ), т. е.d = D, d2 = D2, d1= D1, Рб = Рг, ?б = ?г = 60о

42.Допуски метрических крепежных резьб;

При сочетании полей допусков внутренней резьбы 2Н с полями допусков наружной резьбы 3р и 3n неподвижное соединение может быть обеспечено путем селективной сборки с предварительной сортировкой деталей по собственно среднему диаметру в первом случае на две, а во втором случае — на три группы (рис. 96). Поэтому в справочных таблицах стандарта допуски среднего диаметра деталей сортируемых на группы не включают диаметральных компенсаций отклонений шага и угла профиля, а приводятся раздельно на шаг и угол наклона боковой стороны профиля.

Наряду с этим регламентируется отклонение формы наружной и внутренней резьбы, определяемое разностью между наибольшим и наименьшим действительным средним диаметрами, которая не должна превышать 25 % от допуска среднего диаметра. Обратная конусность не допускается.

В качестве примера приведем условное обозначение посадок резьбы с натягом М12-2Н5С(2)/3р(2) или М12-2Н4С(2)/3р(2), в скобках указаны цифры обозначающие число групп, на которое подлежат сортировки детали.

43.Посадки метрических крепежных резьб;

Посадки с зазором ГОСТ 16098-81

Для обозначения посадок с зазором предусмотрено пять основных отклонений (h, g, f, e, d) для наружной и четыре (H, G, F, E) для внутренней резьбы. Основные отклонения F и Е применяются в резьбах, подлежащих покрытию. Эти отклонения относятся к средним диаметрам болтов и гаек, наружному диаметру болта и внутреннему диаметру гайки.

Переходные посадки ГОСТ 24834-81

Переходные посадки применяются в основном, в резьбовом соединениях шпилек с корпусом.

Стопорение резьбы обеспечивается за счет применения дополнительных элементов заклинивания: конического сбега, плоского бурта , или цилиндрической цапфы . Наиболее часто применяется конический сбег. Плоский бурт применяется, в основном, когда резьбовое отверстие относится к деталям, изготовленным из алюминиевых и магниевых сплавов, а цилиндрическая цапфа только в глухих отверстиях.

Посадки с натягом ГОСТ 4608-81

Стандарт распространяется на наружные резьбы (шпильки), изготовленные из стали, соединяемые с внутренними резьбами в деталях из стали, высокопрочных и титановых сплавов, чугуна, алюминиевых и магниевых сплавов с диаметрами от 5 до 45 мм и шагами от 0,8 до 3 мм.

44 Средства контроля и измерений резьбы;

Контроль резьбы достигается на практике разнообразными средствами измерения. Рассмотрим наиболее употребляемые.

Штангенинструменты и микрометрические инструменты являются измерительными средствами, широко применяемыми в машиностроении, поэтому приобретение навыков работы с ними обязательно. К основным штангенинструментам относятся штангенциркули.

Отсчетным устройством в штангенинструментах является линейный нониус. Это приспособление позволяет отсчитывать дробные доли интервала делений основной шкалы штангенинструмента.

Интервал деления шкалы нониуса а? меньше, чем интервал деления основной шкалы а на величину с , называемую величиной отсчета по нониусу, если модуль нониуса ? = 1. При модуле ? = 2 деление шкалы нониуса а? меньше, чем два деления основной шкалы, также на величину с.

При нулевом положении нулевые штрихи основной шкалы и шкалы нониуса совпадают. При этом последний штрих шкалы нониуса совпадают с штрихом основной шкалы, определяющим длину l шкалы нониуса. При измерении шкала нониуса смещается относительно основной шкалы и по положению нулевого штриха шкалы нониуса определяют величину этого смещения, равную измеряемому размеру. Если нулевой штрих нониуса располагается между штрихами основной шкалы, то следующие за ним штрихи нониуса также занимают промежуточное положение между штрихами основной шкалы. Ввиду того, что деления шкалы нониуса отличаются от делений основной шкалы на величину с, каждое последующее деление нониуса расположено ближе предыдущего к соответствующему штриху основной шкалы. Совпадение какого – либо k – го штриха нониуса с любым штрихом основной шкалы показывает, что расстояние нулевого штриха основной шкалы, по которому производят отсчет целых делений, равно kc.

Таким образом, отсчет измеряемой величины А по шкале с нониусом складывается из отсчета целых делений N по основной шкале и отсчета дробной части деления по шкале нониуса, т. е. A = N + kc.

45. Калибры для контроля цилиндрических резьб;

Для контроля внутренней резьбы применяют проходные резьбовые пробки (ПР), проверяющие приведенный средний диаметры гайки, и непроходные резьбовые пробки (НЕ), проверяющие верхний предел среднего диаметра гайки. Калибр-пробка резьбовой проходной ПР должен свободно

ввинчиваться в контролируемую внутреннюю резьбу. Свинчиваемость калибра с резьбой означает, что приведенный средний диаметр резьбы не меньше установленного наименьшего предельного размера и имеющиеся погрешности шага и угла профиля внутренней резьбы компенсированы соответствующим увеличением среднего диаметра. Увеличение среднего диаметра компенсирует и погрешности винтовой линии резьбы и отклонения формы (круглости, цилиндричности).

Калибр-пробка резьбовой непроходной НЕ, как правило, не должен ввинчиваться в контролируемую резьбу. Допускается ввинчивание калибра до двух оборотов (для сквозной резьбы с каждой из сторон втулки). При контроле коротких резьб (до четырех витков) ввинчивание калибра-пробки допускается до двух оборотов с одной стороны или в сумме с двух сторон.

Проходной резьбовой калибр-пробка проверяет, не выходит ли средний диаметр резьбы за установленный наибольший предельный размер.

Для проверки внутреннего диаметра гайки применяются гладкие проходная и непроходная пробки.

Калибр-пробка гладкий проходной ПР должен свободно входить в контролируемую резьбу под действием собственного веса или при определенной нагрузке.

Калибр-пробка гладкий непроходной НЕ, как правило, не должен входить в контролируемую резьбу под действием собственного веса или под действием определенной нагрузки. Допускается вхождение калибра на один шаг внутренней резьбы.

Аналогично для контроля наружной резьбы применяют резьбовые проходные кольца (ПР),  проверяющие приведенный средний диаметр резьбы, и непроходные резьбовые кольца (НЕ), проверяющие нижний предел среднего диаметра резьбы. Кроме того, наружный диаметр резьбы прове­ряется предельной гладкой скобой.

Калибр-кольцо ПР должен свободно навинчиваться на кон­тролируемую резьбу. Свинчиваемость калибра с резьбой означает, что приведеный средний диаметр резьбы не выходит за установленный наибольший предельный размер и имеющиеся погрешности шага и угла профиля наружной резьбы компенсированы соответствующим уменьшением среднего диаметра. Уменьшение среднего диаметра резьбы компенсирует также погрешности винтовой линии резьбы и погрешности формы (круглость, цилиндричность).

46. Шпоночные соединения;

Шпоночное соединение – один из видов соединений вала со втулкой с использованием дополнительного конструктивного элемента (шпонки), предназначенной для предотвращения их взаимного поворота. Чаще всего шпонка используется для передачи крутящего момента в соединениях вращающегося вала с зубчатым колесом или со шкивом, но возможны и другие решения, например – защита вала от проворота относительно неподвижного корпуса. В отличие от соединений с натягом, которые обеспечивают взаимную неподвижность деталей без дополнительных конструктивных элементов, шпоночные соединения – разъемные. Они позволяют осуществлять разборку и повторную сборку конструкции с обеспечением того же эффекта, что и при первичной сборке.

Шпоночные соединения могут быть подвижными или неподвижными в осевом направлении. В подвижных соединениях часто используют направляющие шпонки с креплением к валу винтами. Вдоль вала с направляющей шпонкой обычно перемещается зубчатое колесо (блок зубчатых колес), полумуфта или другая деталь. Шпонки, закрепленные на втулке, также могут служить для передачи крутящего момента или для предотвращения поворота втулки в процессе ее перемещения вдоль неподвижного вала, как это сделано у кронштейна тяжелой стойки для измерительных головок типа микрокаторов. В этом случае направляющей является вал со шпоночным пазом.

По форме шпонки разделяются на призматические, сегментные, клиновые и тангенциальные.

47. Допуски и посадки шпоночных соединений;

Шпоночное соединение включает в себя минимум три посадки: вал-втулка (центрирующее сопряжение) шпонка-паз вала и шпонка-паз втулки. Точность центрирования деталей в шпоночном соединении обеспечивается посадкой втулки на вал. Это обычное гладкое цилиндрическое сопряжение, которое можно назначить с очень малыми зазорами или натягами, следовательно – предпочтительны переходные посадки. В сопряжении (размерной цепи) по высоте шпонки специально предусмотрен зазор по номиналу (суммарная глубина пазов втулки и вала больше высоты шпонки). Возможно еще одно сопряжение – по длине шпонки, если призматическую шпонку с закругленными торцами закладывают в глухой паз на валу.

Шпоночные соединения могут быть подвижными или неподвижными в осевом направлении. В подвижных соединениях часто используют направляющие шпонки с креплением к валу винтами. Вдоль вала с направляющей шпонкой обычно перемещается зубчатое колесо (блок зубчатых колес), полумуфта или другая деталь. Шпонки, закрепленные на втулке, также могут служить для передачи крутящего момента или для предотвращения поворота втулки в процессе ее перемещения вдоль неподвижного вала, как это сделано у кронштейна тяжелой стойки для измерительных головок типа микрокаторов. В этом случае направляющей является вал со шпоночным пазом.

48. Средства контроля годности параметров шпоночных соединений;

Контроль в условиях серийного массового производства контролируется специальными калибрами. Калибры подразделяются на комплексные, поэлементные. Комплексные калибры предназначены для контроля ширины шпоночного паза и допуска симметричности этого паза относительно цилиндрической поверхности. Для контроля отверстия со шпоночным пазом применяется комплексный проходной калибр-пробка. Комплексный калибр–пробка заменяет три элементных калибра: 1)поэлементный калибр-пробка; 2)поэлементный пазовый калибр для контроля ширины шпонки b; 3)поэлементный калибр-глубиномер для контроля глубины паза (d+t). Для контроля ширины шпоночного паза на валу используют проходной калибр-призма. Поэлементный калибр применяется: 1)калибр-скоба, для контроля диаметра вала; 2)поэлементный пазовый калибр для контроля ширины шпонки b; 3)поэлементный глубиномер, для контроля t1. Размеры элементных калибров стандартизированы ГОСТ 21401-75, ГОСТ 24109-80.

49 Шлицевые соединения;

При увеличенных нагрузках и при повышенных требованиях к центрированию применяют шлицевые соединения втулок с валами. Шлицевое соединение – это многошпоночное соединение, в котором шпонки выполнены заодно с валом или втулкой и расположены по всей окружности равномерно и параллельно их осям. В шлицевых соединениях нагрузка распределяется равномерней, чем в шпоночных соединениях; наблюдается меньшая концентрация напряжений и лучше центрирование напряжения втулки на валу. По форме шлиц шлицевые соединения делятся на: прямобочные, эвольвентные, треугольные. Треугольные шлицы применяются для передачи малых нагрузок, поэтому наиболее распространёнными являются прямобочные.


Поделиться:



Последнее изменение этой страницы: 2019-04-10; Просмотров: 63; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.064 с.)
Главная | Случайная страница | Обратная связь