Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Multidimensional Fourier transform
The Fourier transform can easily be extended to multidimensional sig- nals.
∫ .g( x ). dW x =.g( x ).g( x ). = g( x ) < ∞ (2.31)
then the Fourier transform of g( x ), gˆ ( k ) is given by
gˆ ( k ) = ∫ g( x ) exp.− 2π i k T x Σ dW x =.w x T k . g( x ). (2.32) 46 2 Image Representation
and the inverse Fourier transform by ∞ g( x ) = ∫ gˆ ( k ) exp.2π i k T x Σ dW k =.w− x T k . gˆ ( k ). . (2.33)
w x T k = wkpxp. (2.34) p=1 The discrete Fourier transform is discussed here for two dimensions. The extension to higher dimensions is straightforward. Defi nition 4 (2-D DFT) The 2-D DFT maps an M × N complex-valued ma- trices on M × N complex-valued matrices: M− 1N− 1 1 gˆ u, v = √ . . gm, n exp .− 2π imu Σ exp .− 2π inv Σ MN m=0n=0 M
N (2.35) = √ MN . . gm, nw− nv w− mu.
w
N N N
w(M− 1)u In this equation, the basis matrices are expressed as an outer product of the column and the row vector that form the basis vectors of the one- dimensional DFT (Eq. (2.28)). This refl ects the separability of the kernel of the 2-D DFT. Then the 2-D DFT can be written again as an inner product
M− 1N− 1 • G | H )= . . gm∗ , nhm, n. (2.38) m=0n=0 2.3 Wave Number Space and Fourier Transform 47 The inverse 2-D DFT is given by 1 M− 1N− 1 gmn = √ MN . . gˆ u, vwmuwnv =. B − m, − n. G ˆ. . (2.39) M N u=0 v=0
2.3.4 Alternative Defi nitions‡
a defi nition including the factor 2π is more common: k˘ = 2π /λ. With this notation, two forms of the Fourier transform can be defi ned: the asymmetric form
gˆ (k) = exp(ikx) g(x), g(x) = 2π exp(− ikx) gˆ (k) (2.40) and the symmetric form
gˆ (k˘ ) = √ 2π .exp(ik˘ x).g(x). , g(x) = √ 2π .exp(− ik˘ x) gˆ (k˘ ). . (2.41) Because all three versions of the Fourier transform are in common use, it is likely that wrong factors in Fourier transform pairs will be obtained. The rules for conversion of Fourier transform pairs between the three versions can directly be inferred from the defi nitions and are summarized here: k = 1/λ, Eq. (2.22) g(x) ◦ • k˘ with 2π, Eq. (2.40) g(x) ◦ • k˘ with 2π, Eq. (2.41) g(x) ◦ • gˆ (k) gˆ (k˘ /2π ) gˆ (k˘ /√ 2π )/√ 2π.
(2.42)
|
Последнее изменение этой страницы: 2019-05-04; Просмотров: 238; Нарушение авторского права страницы