Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Электрофорез - направленное движение коллоидных частиц или макроионов под действием внешнего электрического поля.



Структура холинергической системы

Ацетилхолинэстераза находится в растворимой форме в просвете синапса и в связанной с мембраной форме в синаптических мембранах нейронов холинергической системы [22, 23]. Такая структура холинергической системы является фармакоанатомической основой реакции на ингибиторы ацетилхолинэстеразы. Восемь групп холинергических клеток, от которых начинаются проводящие пути в структуры центральной нервной системы (ЦНС). Медиальное ядро перегородки и вертикальное ядро диагонального пучка – основные скопления холинергических клеток, от которых начинаются проводящие пути к гиппокампу, поясной извилине, обонятельной луковице и гипоталамусу. От горизонтального края ядра диагонального пучка нервные волокна направляются к обонятельной луковице, тогда как базальное ядро Мейнерта практически полностью обеспечивает иннервацию коры головного мозга и миндалевидных ядер . Ядро ножки моста и латеральное дорсальное ядро покрышки ствола мозга проецируются в таламус; волокна медиальной уздечки направляются к интерпедункулярному ядру, а волокна от парабигеминального ядра – к верхним бугоркам. Холинергические нейроны вырабатывают холинацетилтрансферазу, которая транспортируется в проекционные зоны, где она служит катализатором синтеза ацетилхолина. Вся холинергическая иннервация коры головного мозга и таламуса человека исходит из этих холинергических образований.

Холинергические рецепторы

В зависимости от реакции на определенные агонисты и антагонисты выделяются два класса холинергических рецепторов – мускариновые и никотиновые. Фармакологически выделено три типа мускариновых рецепторов, а на основании данных, полученных при клонировании молекул, – пять типов. С помощью бунгаротоксина и бунгаротоксина, содержащегося в нейронах ЦНС, обнаружены два основных типа никотиновых рецепторов . Мускариновые рецепторы используют G протеины для передачи сигнала и обладают тропностью к промежуточным продуктам обмена, никотиновые рецепторы являются ионотропными, для передачи сигнала они используют лигандно блокированные  ионные каналы . В коре головного мозга М1-рецептор – наиболее распространенный подтип мускариновых рецепторов . Самая высокая концентрация этих рецепторов обнаруживается в зубчатой извилине, гиппокампе, переднем обонятельном ядре, коре мозга, обонятельном бугорке и nuclei accumbens; умеренная концентрация – в обонятельных луковицах и миндалевидных ядрах. М2-рецепторы обнаруживаются в зонах мозга, содержащих огромное количество холинергических нейронов, а именно в интерпедункулярном ядре и базальных отделах переднего мозга. М2-рецептор – это пресинаптический ауторецептор, который регулирует высвобождение ацетилхолина . Мускариновые М3-рецепторы, в основном, концентрируются в диэнцефальной области и в стволе мозга, а М4-рецепторы обнаруживаются главным образом в полосатом теле и обонятельном бугорке . Самое большое количество никотиновых рецепторов расположено в таламусе, сером веществе в области сильвиевого водопровода и в черной субстанции . Умеренная концентрация никотиновых рецепторов обнаруживается в коре головного мозга и в полосатом теле, относительно низкие концентрации – в гиппокампе и миндалевидном ядре.

КЛАССИФИКАЦИЯ ХОЛИНЕРГИЧЕСКИХ СРЕДСТВ.

I. М -, Н -холиномимические средства

- ацетилхолин ,- карбохолин

III. М-холиномиметики

- пилокарпин

- ацеклидин

- мускарин

IV. М- холиноблокаторы (препараты группы атропина)

а) не селективные                          б) селективные(М-один-холиноблокаторы)

- атропин – скополамин              -пирензипин(гастроцепин)

- платифиллин - метацин

V. Н-холиномиметики

- цититон

- лобелин

- никотин

VI. Н-холиноблокаторы

а) ганглиоблокаторы                       б) миорелаксанты

- бензогексоний – пирилен           -тубокурарин- панкуроний

- гигроний – арфонад                      -анатруксоний-дитилин

- пентамин

Живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию. Живые организмы активно реагируют на окружающую среду. Если толкнуть камень, то он пассивно сдвигается с места. Если толкнуть животное, оно отреагирует активно: убежит, нападет или изменит форму. Способность реагировать на внешние раздражения - универсальное свойство всех живых существ, как растений, так и животных. Живые организмы не только изменяются, но и усложняются. Так у растения или животного появляются новые ветви или новые органы, отличающиеся по своему химическому составу от породивших их структур. Все живое размножается. Эта способность к самовоспроизведению, пожалуй, самая поразительная способность живых организмов. Причем потомство и похоже, и в то же время чем-то отличается от родителей. В этом проявляется действие механизмов наследственности и изменчивости, определяющих эволюцию всех видов живой природы. Сходство потомства с родителями обусловлено ещё одной замечательной особенностью живых организмов - передавать потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах - единицах наследственности, мельчайших внутриклеточных структурах. Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько видоизменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них. Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение крота, рыбы, лягушки, дождевого червя полностью соответствует условиям, в которых они живут. Обобщая и несколько упрощая сказанное о специфике живого, можно отметить, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут, не размножаются.

Метаболизм. Все живые организмы способны к обмену веществ с окружающей средой, поглощая из нее вещества, необходимые для питания, и выделяя продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте веществ они просто переносятся с одного места на другое или меняется их агрегатное состояние: например смыв почвы, превращение воды в пар или лед. В отличие от обменных процессов в неживой природе у живых организмов ори имеют качественно иной уровень в круговороте органических веществ самыми существенными стали процессы превращения веществ - процессы синтеза и распада.Живые организмы поглощают из окружающей среды различные вещества. Вследствие целого ряда сложных химических превращений вещества из окружающей среды уподобляются веществами живого организма и из них строится его тело. Эти процессы называются ассимиляцией, или пластическим обменом. Другая сторона обмена веществ - процессы диссимиляции, в результате которых сложные органические соединения распадаются на простые, при этом утрачивается их сходство с веществами организма и выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют энергетическим обменом. Обмен веществ обеспечивает гомеостаз организма, т.е. неизменность химического состава и строения всех частей организма, и как следствие, постоянство их функционирования в непрерывно меняющихся условиях окружающей среды. Единый принцип структурной организации. Все живые организмы, к какой бы систематической группе они ни относились, имеют клеточное строение. Клетка, как уже указывалось выше, является единой структурно-функциональной единицей, а также единицей развития всех обитателей Земли. Репродукция. На организменном уровне самовоспроизведение или репродукция, проявляется в виде бесполого или полового размножения особей. При размножении живых организмов потомство обычно похоже на родителей: кошки воспроизводят котят, собаки - щенят. Из семян тополя опять вырастает тополь. Деление одноклеточного организма - амебы - приводит к образованию двух амеб, полностью схожих с материнской клеткой.

Легочные объемы

Функциональные пробы на задержку дыхания - функциональная нагрузка с задержкой дыхания после вдоха (проба Штанге) или после выдоха (проба Генчи), измеряется время задержки в секундах. Проба Штанге позволяет оценить устойчивость организма человека к смешанной гиперкапнии и гипоксии, отражающую общее состояние кислородообеспечивающих систем организма при выполнении задержки дыхания на фоне глубокого вдоха, а проба Генчи – на фоне глубоко выдоха. Используются для суждения о кислородном обеспечении организма и оценки общего уровня тренированности человека.

Оборудование: секундомер.

Гипноз. Это особое состояние сознания, которое возникает под влиянием суггестии, включая и самовнушение. Можно предположить, что гипнотические изменения сознания также могут быть объяснены относительным доминированием образных компонентов мышления. Действительно, к объективным проявлениям гипноза относят три категории фактов:

Способность к направленной регуляции вегетативных функций, что невозможно в обычных состояниях сознания (например, воспаление и некроз ткани при внушении ожога, изменение частоты пульса при внушении эмоций разного рода и т.п.). Показано, что сходные способности к регуляции вегетативных функций отмечаются при использовании систем с биологической обратной связью.

Элемент системы при данном подходе – это тот объект, который не подлежит расчленения, и внутренняя структура которого не исследуется. Сложные системы, их структура и иерархия определяются целями исследования.

Подсистема – самостоятельно функционирующий объект, не подлежащий декомпозиции.

Принципы выделения системы:

- наличие управляющего центра; - обладает общей целью;

- состоит из компонентов; - система работает при взаимодействии с окружающей средой;

- система жизнеспособна при наличии достаточных ресурсов.

Сложная Система

- собирательное название систем, состоящих из большого числа взаимосвязанных элементов. Следует подчеркнуть неформальность этого понятия, поскольку на современном этане развития науки нет строгого математич. определения С. с., охватывающего все интуитивные представления о реальных С. с. Типичными примерами С. с. являются: нервная система, мозг, ЭВМ, система управления в человеческом обществе и т. д. В 20 в. в связи с необходимостью изучения все более сложных объектов к понятию С. с. подошли многие науки: биология, техника, экономика, социология и др. Особо следует отметить рождение кибернетики как самостоятельной науки, основным предметом, к-рой являются сложные управляющие системы. В результате этого процесса появился также ряд специальных дисциплин, имеющих в своем названии слово "система": системный анализ, системотехника, общая теория систем и др. Существуют различные подходы к математич. описанию и изучению С. с. в зависимости от используемого математич. аппарата. Можно выделить два типа математич. моделей С. с.: дискретные и непрерывные. Первые изучаются преимущественно в математич. кибернетике (теория управляющих систем) и опираются на аппарат дискретной математики, а вторые - в теории динамических систем и теории автоматич. управления, математич. основой к-рых является теория дифференциальных уравнений. Широко применяются также при изучении С. с. вероятностно-статистические методы - теория массового обслуживания, методы стохастич. программирования и стохастич. моделирования. Несмотря на различие форм и математич. аппарата, все эти подходы к описанию С. с. объединяет общая методология и общий предмет изучения. Одним из наиболее трудных моментов при всех попытках математич. описания С. с. является формализация понятия сложности. Реальным С. с. присущи многие характерные черты "сложности": большое число элементов, из к-рых состоит система; многообразие возможных форм связи элементов системы между собой; сложное функционирование; иерархичность структуры и т. д. Необходимо отметить, что понятия С. с. и "большая система" но являются синонимами, т. к. последний термин охватывает системы, обладающие лишь одной чертой сложности - большим числом элементов. К настоящему времени (1983) основные продвижения в формализации понятия сложности в математич. изучении С. с. получены для достаточно простых (модельных). классов управляющих систем - Тьюринга машин, схем из функциональных элементов, автоматов конечных и т. п. Дальнейшее изучение С. с. идет по пути рассмотрения все более сложных математич. моделей, позволяющих полнее отразить структуру и функционирование реальных С. с. При этом многие закономерности, установленные для более простых моделей, часто переносятся на более сложные.

Некоторые общие свойства систем:

Каждая система имеет определенную структуру, обусловленную формой пространственно-временных связей или взаимодействий между элементами системы. Систему можно назвать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей заданную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

Согласно принципу необходимого разнообразия система не может состоять из элементов, лишенных индивидуальности, идентичных. Нижний предел разнообразия — не менее двух элементов («протон и электрон», «болт и гайка», «он и она»), верхний — бесконечность. Разнообразие отличается от числа разновидностей элементов. Неодинаковость частей системы определяет ее гетерогенность.

Свойства системы невозможно постичь лишь на основании свойств ее частей. «Познать части без знания целого так же невозможно, как познать целое без знания его частей». (Блез Паскаль). Решающее значение имеет именно взаимодействие между элементами. По отдельным деталям машины перед сборкой нельзя судить о ее действии. Совместный эффект от воздействия двух или более различных факторов почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, особое качество целостности определяет эмергентностъ системы, или синергию ее элементов.

Выделение системы делит ее мир на две части — саму систему и ее среду. По характеру связей, в частности, по возможности обмена веществом и энергией со средой в принципе мыслимы: изолированные системы (никакой обмен невозможен); замкнутые системы (невозможен обмен веществом); открытые системы (возможен обмен и веществом, и энергией). В природе существуют и в теории организации рассматриваются только открытые системы. Системы, между внутренними элементами которых и элементами среды осуществляются переносы вещества, энергии и информации, носят название динамических систем.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воздействиям определяет ее способность к самосохранению, благодаря качествам выносливости и устойчивости — постоянству важных параметров системы — ее гомеостазу. Гомеостаз динамической системы поддерживается непрерывно выполняемой ею внешней циклической работой («принцип велосипеда»). Для этого необходимы проток и преобразование энергии в системе. Вероятность достижения главной цели системы — самосохранения (в том числе и путем самовоспроизведения) — определяется как ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а качественное изменение реакции системы, связанное с изменениями структуры и направленное на стабилизацию поведения, — как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается как развитие или эволюция системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в сторону усложнения организации и образования подсистем. При этом усиливаются такие эмергентные свойства (качества) системы, как управляемость и самоорганизация.

Важной особенностью эволюции систем является неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации — раздвоением, расщеплением прежнего пути эволюции. От выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира вещей, организмов, социумов или, наоборот, гибели системы.

Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.

Электрофорез - направленное движение коллоидных частиц или макроионов под действием внешнего электрического поля.

Метод электрофореза Лекарственный электрофорез (ионофорез, ионтофорез) представляет собой метод сочетанного воздействия на организм постоянного электрического тока и лекарственного вещества, вводимого с его помощью. При этом значительная роль в механизме действия лекарственного электрофореза отводится электрическому току как активному биологическому раздражителю. При этом 90 - 92% лекарственного вещества вводится вследствие электрогенного движения, 1-3% - за счет электроосмоса и 5-8% - в результате диффузии.

 Электроды для электрофореза Чаще всего методом электрофореза в организм вводят лекарства-электролиты, диссоциирующие в растворах на ионы - частицы, несущие электрический заряд. Положительно заряженные ионы, вводят с положительного полюса (анода), отрицательно заряженные - с отрицательного (катода). Идеальным растворителем для таких веществ является дистиллированная вода.  В специально приготовленных, так называемых буферных растворах, нейтральные молекулы этих лекарств адсорбируют на своей поверхности ионы растворителя (Н+ или ОН), приобретая в кислой среде положительный электрический заряд, а щелочной - отрицательный. Некоторые вещества (аминокислоты, белки) являются амфотерными полиэлектролитами и могут вводиться с обоих полюсов. Однако с анода они поступают в организм в больших количествах.  При плохой растворимости лекарства в воде в качестве растворителя применяют димексид (диметилсульфоксид - ДМСО) или этиловый спирт. При этом через кожу в организме проникает не только лекарство, но и растворитель за счет процессов осмоса и электроосмоса. Эти явления незначительны для воды, но заметно усиливаются при использовании спирта и особенно - ДМСО, что следует учитывать в лечебной практике.

Расход лекарства на каждые 100 кв.см. площади прокладки составляет ориентировочно 10-15 мл раствора. Сильнодействующие средства вводят из растворов концентрации 1:1000 или наносят на прокладку в количестве, равном высшей разовой дозе (адреналин, атропин, платифиллин и др.). После процедуры электрофореза необходимо тщательно промывать прокладки проточной водой (8 - 10 л на одну прокладку) для вымывания из них лекарственных веществ и стерилизовать их кипячением. Промывать и кипятить прокладки, смоченные различными лекарственными веществами, следует раздельно во избежание загрязнения их паразитарными ионами. Продолжительность процедуры от 10 до 20 - 30 мин. Курс лечения состоит из 10 - 20 процедур, проводимых ежедневно или через день. Для снижения сопротивления электрическому току и улучшения введения препарата перед процедурой электрофореза можно назначить инфракрасное облучение аппаратом "Спектр - ЛЦ" или тепловую процедуру лампой "Соллюкс", а также миостимуляцию импульсными токами.

 Показания к применению  Показания к применению определяются фармакотерапевтическими свойствами вводимого препарата с обязательным учетом показаний к использованию постоянного тока. Лекарственный электрофорез применяют при заболеваниях центральной и периферической нервной системы, опорно-двигательного аппарата, гинекологических заболеваниях и др. Противопоказания к назначению электрофореза: общие для назначения физических факторов: индивидуальная непереносимость постоянного электрического тока, наличие исскуственного водителя ритма, непереносимость фармакологического препарата, гнойничковые поражения кожи на местах наложения электродов. Онкозаболевания не являются противопоказанием к назначению электрофореза, в случаях если лекарство которое применяется при электрофорезе не противопоказан при онкологических заболеваниях.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 215; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.06 с.)
Главная | Случайная страница | Обратная связь