Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Работа подшипников скольжения при жидкостном режиме смазки и понятие об их расчете



При определении конструкции подшипника и соответствующем режи­ме работы может быть осуществлено трение со смазочным материалом. Ра­бота подшипника в этих условиях подчиняется гидродинамической теории смазки.    

Виды трения:

1. Сухое трение - без смазки.

2. Полужидкостное трение, когда имеет место лишь частичное касание вала и подшипника.

3. Жидкостное трение - только между молекулярными слоями жидкости, когда металлические поверхности вала и под­шипника не касаются одна другой.

Все виды трения существуют реально и используются практически.

Сухое трение применяется там, где трущиеся поверхности нельзя защитить от попадания грязи, пыли и абразива, (например, шарниры гусениц, оси подвесок гусеничных машин и проч.). В этих случаях подшипники без смазки имеют меньший износ.

Жидкостное трение - это идеальный расчетный вид трения, на который должны быть ориентированы все подшипники при установившемся режиме работы.

Полужидкостное трение имеет место при неустановившемся режиме (трогании с места, торможении, резких толчках и ударах). Основы теории смазки при жидкостном трении впер­вые разработаны русским ученым проф. Петровым. Он установил, что поток движущейся жидкости, взаимодействуя о наклонной пластиной, образует масляный клин и создает подъемную си­лу, величина которой пропорциональна скорости и вязкости жидкости и обратно пропорциональна квадрату минимального зазора. В подшипнике, при смещении вала под действием нагрузки на величину эксцентриситета, также образуется изогнутые масляный клин и возникает подъемная сила, которая при жидкостном трении уравновешивает реакцию опоры, и вал вращается, не касаясь подшипников.

Для правильной работы подшипников без износа поверхности цапфы и втулки должны быть разделены слоем смазки достаточной толщины.

Обеспечение режима жидкостного трения является основным критерием расчёта большинства подшипников скольжения. При этом одновременно обеспечивается работоспособность по критериям износа и заедания, значи­тельно уменьшаются потери энергии на преодоление вредных сопротивле­ний, цапфа и вкладыш практически не изнашиваются.

Расчет подшипников жидкостного трения выполняют на основе уравнений гидродинамики вязкой жидкости, связывающих давление, скорость и сопротивление смазочного материала вязкому сдвигу.

 

                                                                        

Рис.13

 

Критерием прочности, а следовательно, и работоспособности подшипника скольжения являются контактные напряжения в зоне трения или, что, в принципе, то же самое – контактное давление. Расчётное контактное давление сравнивают с допускаемым . Здесь N – сила нормального давления вала на втулку (реакция опоры), l  - рабочая длина втулки подшипника, d – диаметр цапфы вала.

Иногда удобнее сравнивать расчётное и допускаемое произведение давления на скорость скольжения. Скорость скольжения легко рассчитать, зная диаметр и частоту вращения вала.

Нм/мм2сек.

Произведение давления на скорость скольжения характеризует тепловыделение и износ подшипника. Наиболее опасным является момент пуска механизма, т.к. в покое вал опускается ("ложится") на вкладыш и при начале движения неизбежно сухое трение.

Следует заметить, что подъемная сила, обеспечивающая состояние жидкостного трения, возрастает обратно пропорционально квадрату относительного зазора, который, в свою очередь, определяется чистотой обработки шейки вала и под­шипника. Поэтому для обеспечения надежной работы подшипников при жидкостном трения необходима приработка, то есть сглаживание гребешков на опорной поверхности вала и подшипника. Приработка новых и отремонтированных машин производится на режиме пониженной нагрузки. Во всех руководствах и инструкциях обязательно должен быть указан режим и время обкатки и приработки.

Для создания трения со смазочным материалом необходимо, чтобы в масляном слое возникало избыточное давление или от вращения вала (гид­родинамическое), или от насоса (гидростатическое). Чаще применяют под­шипники с гидродинамической смазкой (рис.14). При вращении цапфа 2 увлекает масло 1. В образовавшемся масляном клине создается избыточное давление, обеспечивающее разделение цапфы и подшипника слоем масла. 3 — эпюра распределения гидродинамического давления в масляном клине.

Рис. 14. Гидродинамическая смазка подшипника: 1 — масляный клин; 2— цапфа вала;

3 — эпюра распределения гидродинамического давления в масляном клине;

Fr — радиальная на­ грузка на подшипник; h — толщина масляного клина

 

Теория показывает, что гидродинамическое давление может развивать­ся только в клиновом зазоре (см. эпюру на рис. 14). Толщина масляного слоя и зависит от угловой скорости и вязкости масла. Чем больше эти па­раметры, тем больше h . Но с увеличением радиальной нагрузки Fr на цап­фу 2 толщина масляного слоя h уменьшается. При установившемся режиме работы толщина h масляного слоя должна быть больше суммы микроне­ровностей цапфы Rzl и вкладыша Rz 2 , (рис. 15).

 

Рис. 15. Масляный слой при установившемся режиме работы

 

Для подшипников с трением со смазочным материалом предвари­тельно производят условный расчет. При этом обычно диа­метр цапфы d , радиальная нагрузка Fr и угловая скорость  должны быть известны. Для проверки выполнения условий жидкостного трения после выбора марки масла расчетным путем определяют радиальный зазор , тол­щину масляного слоя h и исследуют температурный режим подшипников. Гидродинамический расчет выполняют как проверочный.

57. Подбор подшипников качения (на примере вала червячного редуктора). Методы расчета подшипников качения.

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в на­стоящее время немыслимы без подшипников качения.

Подшипники качения состоят из двух колец — внутреннего 1 и наруж­ного 3, тел качения 2 (шариков или роликов) и сепаратора 4 (рис. 16, а). В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).

Основными элементами подшипников качения являются тела каче­ния — шарики или ролики, установленные между кольцами и удерживае­мые сепаратором на определенном расстоянии друг от друга.

Материалы. Материалы подшипников качения назначаются с учётом высоких требований к твёрдости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твёрдость колец и роликов обычно HRC 60...65, а у шариков немного больше – HRC 62... 66, поскольку площадка контактного давления у шарика меньше. Сепараторы изготавливают из мягких углеродистых сталей либо из антифрикционных бронз для высокоскоростных подшипников. Широко внедряются сепараторы из дюралюминия, металлокерамики, текстолита, пластмасс.

Для обеспечения нормальной и долговечной работы подшипников ка­чения к качеству их изготовления и термической обработке тел качения и колец предъявляют высокие требования.

Подшипники качения — это опоры вращающихся или качающихся де­талей. Подшипники качения в отличие от подшипников скольжения стан­дартизованы. Подшипники качения различных конструкций (диапазон на­ружных диаметров 1,0—2600 мм, масса 0,5—3,5 т, например, микроподшип­ники с шариками диаметром 0,35 мм и подшипники с шариками диаметром 203 мм) изготовляют на специализированных подшипниковых заводах.

Выпускаемые в СНГ подшипники качения классифицируют по способности воспринимать нагрузку — радиальные, радиально-упорные, упор­но-радиальные и упорные.

Рис. 16. Подшипники качения: а, б, в, г, д, е — радиальные подшипники; ж, з — радиально-упорные подшипники;

и, к — упорные подшипники; 1 — внутреннее кольцо; 2 — тело ка­чения; 3 — наружное кольцо; 4— сепаратор

 

Радиальные подшипники (см. рис. 16, а—е) воспринимают (в основ­ном) радиальную нагрузку, т. е. нагрузку, направленную перпендикулярно к геометрической оси вала.

Упорные подшипники (см. рис. 16, и, к) воспринимают только осе­вую нагрузку.

Радиально-упорные (см. рис. 16, ж, з) и упорно-радиальные подшип­ники могут одновременно воспринимать как радиальную, так и осевую на­грузку. При этом упорно-радиальные подшипники предназначены для пре­обладающей осевой нагрузки.

В зависимости от соотношения размеров наружного и внутреннего диа­метров, а также ширины подшипники делят на серии: сверхлегкую, особо легкую, легкую, среднюю, тяжелую, легкую широкую, среднюю широкую.

В зависимости от серии при одном и том же внутреннем диаметре кольца подшипника наружный диаметр кольца и его ширина изменяются.

По классам точности подшипники различают следующим образом:

"0" – нормального класса;

"6" – повышенной точности;

"5" – высокой точности;

"4" – особовысокой точности;

"2" – сверхвысокой точности.

При выборе класса точности подшипника необходимо помнить о том, что "чем точнее, тем дороже".

По форме тел качения подшипники делят на шариковые (см. рис. 16, а, б, ж, и), с цилиндрическими роликами (см. рис. 16, в), с кониче­скими роликами (см. рис. 16, з, к), игольчатые (см. рис. 16, д), с витыми роликами (см. рис. 16, е), с бочкообразными роликами (сферическими) (см. рис. 16, г). Тела качения игольчатых подшипников тонкие ролики — иглы диаметром 1,6—5 мм. Длина игл в 5—10 раз больше их диаметра. Се­параторы в игольчатых подшипниках отсутствуют.

По числу рядов тел качения различают однорядные (см. рис. 16, а, в, д—к) и двухрядные (см. рис. 16, б, г) подшипники качения.

По конструктивным и эксплуатационным признакам подшипники делят на самоустанавливающиеся (см. рис. 16, б, г) и несамоустанавливающиеся (см. рис. 16, а, в, д—к).

Под типом подшипника понимают его конструктивную разновидность, определяемую по признакам классификации.

Каждый подшипник качения имеет условное клеймо, обозначающее тип, размер, класс точности, завод-изготовитель.

На неразъемные подшипники клеймо наносят на одно из колец, на разборные — на оба кольца, например, на радиальный подшипник с ко­роткими цилиндрическими роликами (см. рис. 16, в), где наружное коль­цо без бортов и свободно снимается, а внутреннее кольцо с бортами со­ставляет комплект с сепаратором и роликами.

На один и тот же диаметр шейки вала предусматривается несколько серий подшипников, которые отличаются размерами колец и тел качения и соответственно величиной воспринимаемых нагрузок.

В пределах каждой серии подшипники равных типов взаимозаменяемы в мировом масштабе. В стандартах указываются: номер подшипника, размеры, вес, предельное число оборотов, статическая нагрузка и коэффициент работоспособности.

Первая и вторая цифры справа условно обозначают его номинальный внутренний диаметр d (диаметр вала). Для определения истинного размера d (в миллиметрах) необходимо указанные две цифры умножить на пять. Например, подшипник ...04 имеет внутренний диаметр 04 • 5 = 20 мм. Это правило распространяется на подшипники с цифрами ...04 и выше, до ...99, т. е. для J=20h-495 mm. Подшипники с цифрами... 00 имеют d - 10 мм; ...01 d = 12 мм; ...02 d = 15 мм; ...03 d = 17 мм.

Третья цифра справа обозначает серию подшипника, определяя его на­ружный диаметр: 1 — особо легкая, 2 — легкая; 3 — средняя, 4 — тяжелая; 5 — легкая широкая, 6 — средняя широкая.

Четвертая цифра справа обозначает тип подшипника. Если эта цифра 0, то это означает, что подшипник радиальный шариковый одно­рядный; шариковый однорядный (если левее 0 нет цифр, то 0 не указыва­ют); 1 — радиальный шариковый двухрядный сферический; 2 — радиаль­ный с короткими цилиндрическими роликами; 3 — радиальный роликовый двухрядный сферический; 4 — игольчатый или роликовый с длинными ци­линдрическими роликами; 5 — роликовый с витыми роликами; 6 — радиально-упорный шариковый; 7 — роликовый конический (радиально-упорный); 8 — упорный шариковый; 9 — упорный роликовый.

Так, например, подшипник 7208 является роликовым коническим.

Пятая и шестая цифры справа характеризуют конструктивные особен­ности подшипника (неразборный, с защитной шайбой, с закрепительной втулкой и т. п.). Например:

50312 — радиальный однорядный шарикоподшипник средней серии со стопорной канавкой на наружном кольце;

150312 — тот же подшипник с защитной шайбой;

36312 — радиально-упорный шариковый однорядный подшипник сред­ней серии, неразборный.

Седьмая цифра справа характеризует серию подшипника по ширине.

ГОСТом установлены следующие классы точности подшипников каче­ния: 0 — нормальный класс (как правило, 0 в обозначении не указывают); 6 — повышенный; 5 — высокий, 4 — особо высокий, 2 — сверхвысокий. Цифру, обозначающую класс точности, ставят слева от условного обозна­чения подшипника и отделяют от него знаком тире; например, 206 означа­ет шариковый радиальный подшипник легкой серии с номинальным диа­метром 30 мм, класса точности 0.

Кроме цифр основного обозначения слева и справа от него могут дополнительные буквенные или цифровые знаки, характеризующие специальные условия изготовления данного подшипника.

Так, класс точности маркируют цифрой слева через тире от основного обозначения. В порядке повышения точности классы точности обозначают: 0, 6, 5, 4, 2. Класс точности, обозначаемой цифрой 0 и соответствующей нормальной точности, не проставляют. В общим машиностроение применяют подшипники классов 0 и 6. в изделиях высокой точности или работающей высокой частотой вращения (шпиндельные узлы скоростных станков, высокооборотный электродвигатели и др.) применяют подшипники класса 5 и 4. подшипники класса точности 2 используют в гироскопических приборах.

Так, например, подшипник 7208 — класса точности 0.

Помимо приведенных выше имеются и дополнительные (более высокие и более низкие) классы точности.

В зависимости от наличия дополнительных требований к уровню вибраций, отклонениям формы и расположения поверхностей качения, моменту трения и др. установлены три категории подшипников: А — повышенные регламентированные нормы; В — регламентированные нормы; С — без дополнительных требований.

Возможные знаки справа от основного обозначения: Е — сепаратор выполнен из пластических материалов; Р — детали подшипника из теп­лостойких сталей; С — подшипник закрытого типа при заполнении сма­зочным материалом и др.

Примеры обозначений подшипников: 311 — подшипник шариковый радиальный однорядный, средней серии диаметров 3, серии ширин 0, с внутренним диаметром d = 55 мм, основной конструкции (см. рис. 14.5, а), класса точности 0;

6-36209 — подшипник шариковый радиально-упорный однорядный, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 45 мм, с углом контакта а = 12°, класса точности 6;

4-12210 — подшипник роликовый радиальный с короткими цилиндрическими роликами, легкой серии диаметров 2, серии ширин 0, с внутренним диаметром d = 50 мм, с одним бортом на наружном кольце (см. рис. 14.9, б), класса точности 4;

4-3003124Р — подшипник роликовый радиальный сферический двухрядный особолегкой серии диаметров 1, серии ширин 3, с внутренним диаметром d=120 мм, основной конструкции (см. рис. 14.8), класса точности 4, детали подшипника изготовлены из теплостойких сталей.

Характеристики подшипников качения.

Наибольшее распространение получили шариковые радиальные одноряд­ные подшипники (см. рис. 16, а). Эти подшипники допускают сравнительно большую угловую скорость, особенно с сепараторами из цветных металлов или из пластмасс, допускают небольшие перекосы вала (от 15' до 30') и могут воспринимать незначительные осевые нагрузки. Допустимая осевая нагрузка для радиальных несамоустанавливающихся подшипников не должна превы­шать 70% от неиспользованной радиальной грузоподъемности подшипника.

Роликовые радиальные подшипники с короткими роликами (см. рис. 16, в) по сравнению с аналогичными по габаритным размерам шари­коподшипниками обладают увеличенной грузоподъемностью, хорошо вы­держивают ударные нагрузки. Однако они совершенно не воспринимают осевых нагрузок и не допускают перекоса вала (ролики начинают работать кромками, и подшипники быстро выходят из строя).

Роликовые радиальные подшипники с витыми роликами (см. рис. 16, е) применяют при радиальных нагрузках ударного действия; удары смягчают­ся податливостью витых роликов. Эти подшипники менее требовательны к точности сборки и к защите от загрязнений, имеют незначительные ради­альные габаритные размеры.

Игольчатые подшипники (см. рис. 16, д) отличаются малыми радиаль­ными габаритными размерами, находят применение в тихоходных (до 5 м/с) и тяжелонагруженных узлах, так как выдерживают большие ради­альные нагрузки. В настоящее время их широко используют для замены подшипников скольжения. Эти подшипники воспринимают только радиальные нагрузки и не допускают перекоса валов. Для максимального уменьшения размеров применяют подшипники в виде комплекта игл, не­посредственно опирающихся на вал, с одним наружным кольцом.

Самоустанавливающиеся радиальные двухрядные сферические шариковые (рис. 16, б) и роликовые (см. рис. 16, г) подшипники применяют в тех слу­чаях, когда перекос колец подшипников может составлять до 2—3°. Эти под­шипники допускают незначительную осевую нагрузку (порядка 20% от не­использованной радиальной) и осевую фиксацию вала. Подшипники имеют высокие эксплуатационные показатели, но они дороже, чем однорядные.

Конические роликоподшипники (см. рис. 16, з) находят примене­ние в узлах, где действуют одновременно радиальные и односторонние осевые нагрузки. Эти подшипники могут воспринимать также и ударные нагрузки. Радиальная грузоподъемность их в среднем почти в 2 раза выше, чем у радиальных однорядных шарикоподшипников. Их рекомендуется ус­танавливать при средних и низких угловых скоростях вала (до 15 м/с).

Аналогичное использование имеют радиально-упорные шарикоподшипники (см. рис. 16, ж), применяемые при средних и высоких угловых скоростях. Радиальная грузоподъемность у этих подшипников на 30—40 % больше, чем у радиальных однорядных. Их выполняют разъемными со съемным на­ружным кольцом и неразъемными.

Шариковые и роликовые упорные подшипники (см. рис. 16, и. к) предназначены для восприятия односторонних осевых нагрузок. Применя­ются при сравнительно невысоких угловых скоростях, главным образом на вертикальных валах. Упорные подшипники радиальную нагрузку не вос­принимают. При необходимости установки упорных подшипников в узлах, где действуют не только осевые, но и радиальные нагрузки, следует допол­нительно устанавливать радиальные подшипники.

В некоторых конструкциях, где приходится бороться за уменьшение радиальных габаритов, применяются т.н. "бескольцевые" подшипники, когда тела качения установлены непосредственно между валом и корпусом. Однако нетрудно догадаться, что такие конструкции требуют сложной, индивидуальной, а, следовательно, и дорогой сборки-разборки.

Достоинства подшипников качения:

- низкое трение, низкий нагрев;

- экономия смазки;

- высокий уровень стандартизации;

- экономия дорогих антифрикционных материалов.

Недостатки подшипников качения:

- высокие контактные напряжения, и поэтому ограниченный срок службы;

- высокие габариты (особенно радиальные) и вес;

- высокие требования к оптимизации выбора типоразмера;

- большая чувствительность к ударным нагрузкам вследствие большой жесткости конструкции;

- повышенный шум;

- слабая виброзащита, более того, подшипники сами являются генераторами вибрации за счёт даже очень малой неизбежной разноразмерности тел качения.


Поделиться:



Последнее изменение этой страницы: 2019-05-08; Просмотров: 89; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.055 с.)
Главная | Случайная страница | Обратная связь