Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Анализ информационных технологий



Введение

Единство законов обработки информации в системах pазличной пpиpоды (физических, экономических, биологических и т.п.) является фундаментальной основой теории информационных процессов, определяющей ее общезначимость и специфичность. Информация - понятие во многом абстpактное, существующее " само по себе" вне связи с конкретной областью знания, в которой она используется.

Информационные pесуpсы в современном обществе играют не меньшую, а нередко и большую pоль, чем pесуpсы материальные. Знания, кому, когда и где продать товар, может цениться не меньше, чем собственно товар, и в этом плане динамика развития общества свидетельствует о том, что на " весах" материальных и инфоpмационных pесуpсов последние начинают пpевалиpовать, причем тем сильнее, чем более общество открыто, чем более развиты в нем сpедства коммуникации, чем большей информацией оно располагает.

С позиций рынка, информация давно уже стала товаром и это обстоятельство требует интенсивного развития практики, пpомышленности и теории компьютеризации общества. Компьютер, как инфоpмационная среда не только позволил совершить качественный скачек в организации пpомышленности, науки и рынка, но он определил новые самоценные области производства: вычислительная техника, телекоммуникации, пpогpаммные продукты.

Тенденции компьютеризации общества связаны с появлением новых профессий, связанных с вычислительной техникой, и различных категоpий пользователей ЭВМ. Если в 60-70е годы в этой сфере доминиpовали специалисты по вычислительной технике (инженеpы-электpоники и пpогpаммисты), создающие новые сpедства вычислительной техники и новые пакеты прикладных пpогpамм, то сегодня интенсивно pасшиpяется категория пользователей ЭВМ - представителей самых разных областей знаний, не являющихся специалистами по компьютеpам в узком смысле, но умеющих использовать их для решения своих специфических задач.

Пользователь ЭВМ (или конечный пользователь) должен знать общие принципы организации инфоpмационных процессов в компьютерной сpеде, уметь выбрать нужные ему информационные системы и технические сpедства и быстро освоить их применительно к своей пpедметной области. Учитывая интенсивное развитие вычислительной техники и во многом насыщенность рынка пpогpаммных продуктов, два последних качества пpиобpетают особое значение. Минимум знаний по организации компьютерных систем обычно называют компьютерной грамотностью. Не существует строго очеpченных pамок, определяющих это понятие, - каждый пользователь опpеделяет их для себя сам, но вместе с тем отсутствие такой гpамотности делает сегодня невозможным доступ ко многим узко специальным профессиям, на первый взгляд весьма далеким от компьютера.

В современном мире, в котором главное это информация, мало кто может обойтись без персонального компьютера. Однако немногие пользователи компьютеров знают, из каких частей, будь то аппаратные или программные, состоит их рабочая станция, и каковы ее возможности. А ведь такие вещи необходимо знать о своем персональном компьютере. Например, в случае выхода из строя одного из элементов персонального компьютера, зная, что это за элемент и его характеристики, Вы без труда сможете его заменить и для этого не понадобилось бы нести компьютер в сервис и платить большие деньги за замену, которую Вы сами смогли бы произвести без особого труда. К тому же зная возможности своего персонального компьютера, такие характеристики, как частота процессора, количество памяти, объем жесткого диска и многие другие, можно сразу понять, при установке того или иного программного обеспечения, игр и др., будет ли корректно и быстро работать то, что вы бы хотели установить на компьютер.

На современном рынке программных продуктов, очень слабое развитие получило программное обеспечение тестирования, информатизации и характеризования отдельных модулей персонального компьютера, таких как: материнская плата, процессор (сопроцессор), чипсет, оперативная память, жесткие диски, видеоадаптер и многие другие. Существует множество программных продуктов, которые либо выдают информацию, либо тестируют модули персонального компьютера лишь по отдельности. Однако программное обеспечение, которое могло бы совместить в себе охарактеризование и тестирование сразу, пусть не всех частей, но хотя бы большинства отдельных модулей персонального компьютера на данный момент единицы.

Одним из подобных программных продуктов является SiSoftware Sandra, которая объединяет в себе выдачу информации: о системе персонального компьютера в целом, о материнской плате, процессоре, видео системе, памяти, логических дисках и др.; позволяет тестировать процессор, диски, локальную сеть; позволяет просматривать содержимое таких системных файлов в среде ОС Windows, как boot.ini, system.ini, autoexec.bat и config.sys. Однако данное программное обеспечение содержит ряд существенных недостатков, а именно: большая нагрузка на центральный процессор при работе программы, большой объем памяти, занимаемый программой при ее работе, большой объем дискового пространства, занимаемый данным программным продуктом, при его установке (около 5 мегабайт), к тому же данный программный продукт является ShareWare, т. е. его необходимо приобретать за некоторое количество денег, чтобы его можно было использовать.

Как уже говорилось ранее, на данный момент на рынке программного обеспечения один единственный программный продукт подобного рода, который объединяет в себе выдачу информации и тестирование отдельных модулей персонального компьютера, этот программный продукт - SiSoftware Sandra. Поэтому создание подобного программного продукта весьма актуально на сегодняшний момент, дабы дать возможность пользователям персонального компьютера, которые хотят приобрести такое программное обеспечение, выбирать между несколькими программами, а не брать именно SiSoftware Sandra, только потому что этот программный продукт является единственным в своем роде. К тому же лично для меня, как разработчика программного обеспечения было весьма интересно создать программный продукт «ПК Инфо», который я назвал PCInfo, дабы проверить свои возможности, знания и навыки программирования и разработки программного обеспечения в целом, а так же узнать много нового. Мой программный продукт является аналогом, и прямым конкурентом уже упомянутого программного продукта SiSoftware Sandra. По сравнению с аналогами, мой программный продукт обладает рядом преимуществ, которых нет у его аналогами, а именно: малый объем жесткого диска, занимаемый программой (около трехсот килобайт), меньший объем оперативной памяти, занимаемый программой при ее запуске и работе, меньшая загруженность центрального процессора при работе программы, более быстрая работа программного продукта по сравнению с основными аналогами, к тому же, мой программный продукт в версии 1.0.1 является Freeware, т. е. бесплатным программным обеспечением, что весьма существенно для подобного рода программного обеспечения.

Дипломная работа содержит 66 страниц, из них приложения содержат 12 страниц, 8 рисунков, библиографический список из 11-ти наименований.


Анализ информационных технологий

Обзор аналогов

Самый распространенный, и пожалуй единственный серьезный аналог моего программного продукта это программный продукт SiSoftware Sandra. SiSoftware Sandra - (сокращение от System ANalyser, Diagnostic and Reporting Assistant) - это информационная и диагностическая программа. Она предоставляет практически всю информацию о вашем аппаратном и программном обеспечении (включая недокументированную), которая вам может понадобиться. Sandra похожа на многие другие подобные программы для Windows, однако, она старается превзойти их и показать то, что есть на самом деле, максимально объективно. Вы можете получить информацию о процессоре, чипсете, видео адаптере, портах, принтерах, звуковой карте, памяти, сети, процессах Windows, AGP, связях ODBC, USB2, 1394/Firewire, и т.д. Здесь разработчики описывали лишь преимущества данной программы, однако ничего не сказано было о ее недостатках, а их достаточно. Это и большой объем дискового пространства, занимаемого программой после ее установки (в версии 2004 более двенадцати мегабайт), и сравнительно медленная ее работа, особенно это проявляется в тестах, которые порой длятся по несколько минут, а не по пятнадцать секунд, как просит программа подождать пока запускаемый модуль тестируется, а при запуске теста локальных дисков программа зачастую и вовсе зависает, поскольку начинает потреблять для теста большое количество памяти, которой для самого теста может вовсе не хватить, это и большая нагрузка на центральный процессор, особенно во время запуска все тех же тестов, при этом процессор работает на пределе и его загрузка постоянно держится на уровне девяноста – ста процентов. Хоть в принципе для подобного рода программ это нормально, одна можно создать алгоритм, при котором программа не будет настолько требовательна к системным ресурсам.

Еще один аналог моего программного продукта это AIDA32 - Enterprise System Information. Все данные сгруппированы по разделам, а каждый раздел, в свою очередь, зачастую имеет несколько своих внутренних разделов, содержащих более специфичную информацию. Однако данный программный продукт менее распространен нежели SiSoftware Sandra, поскольку она более проста, в ней не так много модулей описания и тестирования модулей персонального компьютера, но в ней содержатся практически те же недостатки что и у SiSoftware Sandra, это и пять мегабайт на жестком диске после установки программы, и большая требовательность к системным ресурсам и небесплатность программного продукта.


2. Обзор интегральных средств

 

Языки описания сценариев

Языки описания сценариев, такие как Perl, Python, Rexx, Tcl, Visual Basic и языки оболочек UNIX, предполагают стиль программирования, весьма отличный от характерного для языков системного уровня. Они предназначаются не для написания приложения с “нуля”, а для комбинирования компонентов, набор которых создается заранее при помощи других языков. Например, Tcl, Visual Basic могут использоваться для построения пользовательских интерфейсов из имеющихся элементов управления, а языки описания сценариев для оболочек UNIX применяются для формирования “конвейеров” обработки потоков данных из набора стандартных фильтров. Языки описания сценариев часто применяются и для дополнения готовых компонентов новыми возможностями; однако эта деятельность редко охватывает создание сложных алгоритмов или структур данных, которые уже обычно бывают уже заложены в компоненты. Иногда языки описания сценариев даже называют связующими или языками системной интеграции.

Для языков описания сценариев характерно отсутствие типизации, которая только усложнила бы задачу соединения компонентов. Все элементы в них выглядят и функционируют одинаково и являются полностью взаимозаменяемыми. Например, в Tcl или Visual Basic переменная может содержать в одной точке программы строку, а в другой – целое число. Код и данные также часто бывают взаимозаменяемы. Например, Tcl, Visual Basic переменная может содержать в одной точке программы строку, а в другой - целое число. Код и данные также часто бывают взаимозаменяемы, так что программа может генерировать другую программу - и сразу же запускать ее исполнение. Обычно языки описания сценариев используют переменные строковых типов, которые обеспечивают единообразный механизм представления для различных сущностей.

Отсутствие в языке деления переменных на типы упрощает соединение компонентов между собой. Нет априорных ограничений на то, каким образом может использоваться тот или иной элемент, а все компоненты значения представляются в едином формате. Таким образом, компонент или значение могут быть использованы в любой ситуации; будучи спроектированы для одних способов применения, они могут оказаться задействованы совершенно иными, о которых их создатель никогда не помышлял. Например, в UNIX – оболочках работа любой программы – фильтра включает чтение данных из входного потока и запись их в выходной поток. Любые две такие программы могут быть связаны путем назначения выходного потока одной в качестве входного потока другой. Следующая команда оболочки представляет систему из трех фильтров, подсчитывающую в выделенном фрагменте текста строки, содержащие слово “scripting”:

Select | grep scripting | WC

Программа select считывает текст, выделенный в данный момент на экране, и выводит его свои выходной поток; фильтр grep считывает входной поток и пропускает на выход строки, содержащие слово “scripting”; а программа wc подсчитывает число строк в своем потоке. Любой из подобных компонентов может найти применение во множестве различных ситуации, решая каждый раз иную общую задачу. Сильная типизация языков программирования системного уровня затрудняет повторное использование кода. Она поощряет программистов к созданию большого количества несовместимых друг с другом интерфейсов, каждый из которых требует применение объектов своего типа. Компилятор не позволяет объектам других типов взаимодействовать с этим интерфейсом, не смотря на то, что результат, мог бы оказаться и весьма полезным. Таким образом, чтобы использовать новый объект с существующем интерфейсом, программисту приходится писать “переходник”, преобразующий объект к типу, на который рассчитан интерфейс. А применение “переходника” требует, в свою очередь, перекомпиляции части или даже всего приложения целиком. Доминирующий в настоящее время способ распространения ПО в виде двоичных файлов делает этот подход невозможным.

Чтобы оценить преимущества бес типового языка программирования, рассмотрим следующий пример на языке Tcl:

Button.b –text Hello! -font {Times 16} – command {puts hello}

Эта команда создает на экране новую кнопку с надписью на ней Hello! шрифтом Times 16 пунктов, при нажатии, на которую выводится короткое сообщение hello. В одной строке здесь уместилось шесть элементов различных типов: название команды (button), название кнопки (. b), идентификаторы атрибутов (-text, -font, -command), простые строки (Hello! hello), спецификация шрифта (Times 16), состоящая из названия начертания (Times) и размера в пунктах (16), а также целый Tcl-сценарий (puts hello). Все элементы представляются единообразно – в виде строк. В данном примере атрибуты могли быть перечислены в произвольном порядке, а неупомянутым атрибутам (их насчитывается более двадцати) будут присвоены значения по умолчанию.

В случае реализации на Java тот же самый пример потребовал бы семи строк кода, составляющих два метода. Для С++ с использованием библиотеки Microsoft Foundation Classes (MFC) масштабы увеличились примерно до двадцати пяти строк кода, образующих три процедуры. Один только выбор шрифта требует нескольких обращении к функциямMFC

Cfont *fontPtr=new Cront ();

fontPtr-> Crete Font (16, 0, 0, 0, 700,

0, 0, 0, ANSI_CHARSET,

OUT_DEFAULT_PRECIS,

CLIP_DEFAULT_PRECIS,

DEFAULT_QUALITY,

DEFAULT_PITCH|

FF_DONTCARE,

“Times New Roman”);

buttonPtr-> SetFont(fontPtr);

Можно было бы обойтись без значительной части этого кода, если бы не строгая типизация. Чтобы задать шрифт для кнопки, необходимо обратиться к методу Set Font; однако он требует передачи в качестве аргумента указателя на объект Cfont. Приходиться объявлять и инициализировать новый объект. Инициализацию объекта Cfont выполняет его метод Create Font, который имеет жесткий интерфейс, требующий задания 14 различных аргументов. В TCL существенные характеристики шрифта (начертание Times и кегль 16 пунктов) могут быть указаны непосредственно без каких-либо объявлений или преобразовании. Более того, TCL позволяет описать и поведение кнопки непосредственно в теле создающей ее команды, тогда как в С++ или Java для этого необходим отдельный метод [3].

 

Другие языки

Существует огромное количество атрибутов, помимо степени строгости контроля типов или уровня языка, и есть очень много интересных примеров, которые не могут быть однозначно отнесены к одной из двух рассмотренных нами категории. Например, семейство Lisp занимает некоторое промежуточное положение, обладая атрибутами языков описания сценариев и языков программирования системного уровня. В Lisp впервые были реализованы такие концепции, как интерпретация и динамический контроль типов, которые широко используются в современных языках описания сценариев, А также автоматическое управление хранением и интегрированные среды разработки, применяемые в языках обеих категории [7].

Достоинства Visual Basic

Хотя программная оболочка Visual Basic выполнена полностью графической, а сам язык программирования весьма далек от языка, применяемого для ранних версий интерпретаторов Basic, простота и элегантность Basic осталась в большой мере присущей и новым версиям. Широкие возможности Visual Basic и его простота послужили основной причиной для выбора его в качестве языка программирования для создания таких Windows-приложений как Excel. Среда программирования Visual Basic содержит все необходимые инструменты для быстрого и эффективного создания мощных программ, работающих в среде Windows.

Инструменты, имеющиеся в среде программирования Visual Basic, помогают при конструировании Basic-программ.

Строка Меню обеспечивает доступ к большинству команд, управляющих средой программирования. Меню и команды работают в соответствии со стандартными соглашениями, общими для всех приложений Windows.

Под строкой меню имеется панель инструментов - набор кнопок, являющихся ярлыками для команд, с помощью которых осуществляется работа в среде Visual Basic. В нижней части экрана расположена панель задач. Её можно использовать для переключения между компонентами Visual Basic или для активации других приложений Windows. Также имеется окно инструментов (Toolbox), окно содержания проекта (Project Container), окно формы(Form), окно проекта(Project), окно непосредственного выполнения(Immediate), окно свойств(Properties) и окно макета формы(Form layout).

Файлы проектов Visual Basic имеют расширения.vbp, .wak, .vbg в имени файла. В среде Visual Basic имеется 7 инструментов.

Форма Visual Basic – это окно в интерфейсе пользователя.

Инструменты и средства управления на панели служат для того, чтобы добавлять новые элементы пользовательского интерфейса. Панель инструментов содержит также средства управления для создания объектов, выполняющих специальные “за экранные” операции: управление информацией в базе данных, контроль временных интервалов и т.д.

Окно Properties (Свойства) позволяет изменять характеристики (установки) элементов пользовательского интерфейса в форме. Окно свойств содержит список всех объектов, использующихся в данном пользовательском интерфейсе. Здесь также могут перечисляться изменяемые установки свойств для каждого объекта.

Visual Basic – программа состоит из нескольких файлов, которые собираются вместе, когда программа готова. В окне Project перечисляются все файлы, используемые при программировании.

Файлы проекта содержат список всех поддерживаемых файлов и программ проекта и их расширение vbp (Visual Basic program).

В Visual Basic 6 в окно Project можно одновременно загрузить несколько файлов проектов.

В Visual Basic предусмотрена оперативная справочная система, включающая информацию о среде программирования, инструментах и языке программирования Visual Basic.

Средства управления. С их помощью создаются объекты и формы, выводится информация в текстовом блоке, просматриваются диски и папки в системе, обрабатываются данные, вводимые пользователем, запускаются Windows-приложения и просматриваются записи баз данных. Язык программирования Visual Basic содержит несколько сотен инструкций, функций и специальных символов. Он предназначен не только для использования в программном продукте Visual Basic, Microsoft Visual Basic for Application включен в состав Microsoft Excel, Microsoft Word, Microsoft Access, Microsoft PowerPoint, Microsoft Project и других приложений для Windows. Переменные и операторы.

Visual Basic позволяет резервировать переменные с указанием размера и без оного, работать с различными типами данных, использовать константы, работать с математическими операторами и функциями, использовать дополнительные операторы. Предусмотрено использование операторов циклов For..Next, Do, объектов типа “таймер” (невидимый секундомер в программе). Точность установления времени в программе составляет 1 миллисекунду, или 1/1000 сек. Запущенный таймер постоянно работает - т.е. выполняется соответствующая процедура обработки прерывания через заданный интервал времени - до тех пор, пока пользователь не остановит таймер или не отключит программу.


3.2.2. Методология RAD

Одним из возможных подходов к разработке ПО в рамках спиральной модели ЖЦ является получившая в последнее время широкое распространение методология быстрой разработки приложений RAD (Rapid Application Development). Под этим термином обычно понимается процесс разработки ПО, содержащий 3 элемента:

- небольшую команду программистов (от 2 до 10 человек);

- короткий, но тщательно проработанный производственный график (от 2 до 6 мес.);

- повторяющийся цикл, при котором разработчики, по мере того, как приложение начинает обретать форму, запрашивают и реализуют в продукте требования, полученные через взаимодействие с заказчиком.

Команда разработчиков должна представлять из себя группу профессионалов, имеющих опыт в анализе, проектировании, генерации кода и тестировании ПО с использованием CASE-средств. Члены коллектива должны также уметь трансформировать в рабочие прототипы предложения конечных пользователей.

Жизненный цикл программного обеспечения по методологии RAD состоит из четырех фаз:

- фаза анализа и планирования требований;

- фаза проектирования;

- фаза построения;

- фаза внедрения.

На фазе анализа и планирования требований пользователи системы определяют функции, которые она должна выполнять, выделяют наиболее приоритетные из них, требующие проработки в первую очередь, описывают информационные потребности. Определение требований выполняется в основном силами пользователей под руководством специалистов-разработчиков. Ограничивается масштаб проекта, определяются временные рамки для каждой из последующих фаз. Кроме того, определяется сама возможность реализации данного проекта в установленных рамках финансирования, на данных аппаратных средствах и т.п. Результатом данной фазы должны быть список и приоритетность функций будущей ИС, предварительные функциональные и информационные модели ИС.

На фазе проектирования часть пользователей принимает участие в техническом проектировании системы под руководством специалистов-разработчиков. CASE-средства используются для быстрого получения работающих прототипов приложений. Пользователи, непосредственно взаимодействуя с ними, уточняют и дополняют требования к системе, которые не были выявлены на предыдущей фазе. Более подробно рассматриваются процессы системы. Анализируется и, при необходимости, корректируется функциональная модель. Каждый процесс рассматривается детально. При необходимости для каждого элементарного процесса создается частичный прототип: экран, диалог, отчет, устраняющий неясности или неоднозначности. Определяются требования разграничения доступа к данным. На этой же фазе происходит определение набора необходимой документации.

После детального определения состава процессов оценивается количество функциональных элементов разрабатываемой системы и принимается решение о разделении ИС на подсистемы, поддающиеся реализации одной командой разработчиков за приемлемое для RAD-проектов время - порядка 60 - 90 дней. С использованием CASE-средств проект распределяется между различными командами (делится функциональная модель). Результатом данной фазы должны быть:

- общая информационная модель системы;

- функциональные модели системы в целом и подсистем, реализуемых отдельными командами разработчиков;

- точно определенные с помощью CASE-средства интерфейсы между автономно разрабатываемыми подсистемами;

- построенные прототипы экранов, отчетов, диалогов.

Все модели и прототипы должны быть получены с применением тех CASE-средств, которые будут использоваться в дальнейшем при построении системы. Данное требование вызвано тем, что в традиционном подходе при передаче информации о проекте с этапа на этап может произойти фактически неконтролируемое искажение данных. Применение единой среды хранения информации о проекте позволяет избежать этой опасности.

В отличие от традиционного подхода, при котором использовались специфические средства прототипирования, не предназначенные для построения реальных приложений, а прототипы выбрасывались после того, как выполняли задачу устранения неясностей в проекте, в подходе RAD каждый прототип развивается в часть будущей системы. Таким образом, на следующую фазу передается более полная и полезная информация.

На фазе построения выполняется непосредственно сама быстрая разработка приложения. На данной фазе разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Программный код частично формируется при помощи автоматических генераторов, получающих информацию непосредственно из репозитория CASE-средств. Конечные пользователи на этой фазе оценивают получаемые результаты и вносят коррективы, если в процессе разработки система перестает удовлетворять определенным ранее требованиям. Тестирование системы осуществляется непосредственно в процессе разработки.

После окончания работ каждой отдельной команды разработчиков производится постепенная интеграция данной части системы с остальными, формируется полный программный код, выполняется тестирование совместной работы данной части приложения с остальными, а затем тестирование системы в целом. Завершается физическое проектирование системы:

- определяется необходимость распределения данных;

- производится анализ использования данных;

- производится физическое проектирование базы данных;

- определяются требования к аппаратным ресурсам;

- определяются способы увеличения производительности;

- завершается разработка документации проекта.

Результатом фазы является готовая система, удовлетворяющая всем согласованным требованиям.

На фазе внедрения производится обучение пользователей, организационные изменения и параллельно с внедрением новой системы осуществляется работа с существующей системой (до полного внедрения новой). Так как фаза построения достаточно непродолжительна, планирование и подготовка к внедрению должны начинаться заранее, как правило, на этапе проектирования системы. Приведенная схема разработки ИС не является абсолютной. Возможны различные варианты, зависящие, например, от начальных условий, в которых ведется разработка: разрабатывается совершенно новая система; уже было проведено обследование предприятия и существует модель его деятельности; на предприятии уже существует некоторая ИС, которая может быть использована в качестве начального прототипа или должна быть интегрирована с разрабатываемой.

Следует, однако, отметить, что методология RAD, как и любая другая, не может претендовать на универсальность, она хороша в первую очередь для относительно небольших проектов, разрабатываемых для конкретного заказчика. Если же разрабатывается типовая система, которая не является законченным продуктом, а представляет собой комплекс типовых компонент, централизованно сопровождаемых, адаптируемых к программно-техническим платформам, СУБД, средствам телекоммуникации, организационно-экономическим особенностям объектов внедрения и интегрируемых с существующими разработками, на первый план выступают такие показатели проекта, как управляемость и качество, которые могут войти в противоречие с простотой и скоростью разработки. Для таких проектов необходимы высокий уровень планирования и жесткая дисциплина проектирования, строгое следование заранее разработанным протоколам и интерфейсам, что снижает скорость разработки.

Методология RAD неприменима для построения сложных расчетных программ, операционных систем или программ управления космическими кораблями, т.е. программ, требующих написания большого объема (сотни тысяч строк) уникального кода.

Не подходят для разработки по методологии RAD приложения, в которых отсутствует ярко выраженная интерфейсная часть, наглядно определяющая логику работы системы (например, приложения реального времени) и приложения, от которых зависит безопасность людей (например, управление самолетом или атомной электростанцией), так как итеративный подход предполагает, что первые несколько версий наверняка не будут полностью работоспособны, что в данном случае исключается.

Оценка размера приложений производится на основе так называемых функциональных элементов (экраны, сообщения, отчеты, файлы и т.п.) Подобная метрика не зависит от языка программирования, на котором ведется разработка. Размер приложения, которое может быть выполнено по методологии RAD, для хорошо отлаженной среды разработки ИС с максимальным повторным использованием программных компонентов, показано в таблице 3.1.

 

Таблица 3.1.

< 1000 функциональных элементов один человек
1000-4000 функциональных элементов одна команда разработчиков
> 4000 функциональных элементов 4000 функциональных элементов на одну команду разработчиков

 

В качестве итога перечислим основные принципы методологии RAD:

- разработка приложений итерациями;

- необязательность полного завершения работ на каждом из этапов жизненного цикла;

- обязательное вовлечение пользователей в процесс разработки ИС;

- необходимое применение CASE-средств, обеспечивающих целостность проекта;

- применение средств управления конфигурацией, облегчающих внесение изменений в проект и сопровождение готовой системы;

- необходимое использование генераторов кода;

- использование прототипирования, позволяющее полнее выяснить и удовлетворить потребности конечного пользователя;

- тестирование и развитие проекта, осуществляемые одновременно с разработкой;

- ведение разработки немногочисленной хорошо управляемой командой профессионалов;

- грамотное руководство разработкой системы, четкое планирование и контроль выполнения работ.

3.2.3. Методология функционального моделирования SADT. Методология SADT разработана Дугласом Россом и получила дальнейшее развитие в работе. На ее основе разработана, в частности, известная методология IDEF0 (Icam DEFinition), которая является основной частью программы ICAM (Интеграция компьютерных и промышленных технологий), проводимой по инициативе ВВС США.

Методология SADT представляет собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые им действия и связи между этими действиями. Основные элементы этой методологии основываются на следующих концепциях:

- графическое представление блочного моделирования. Графика блоков и дуг SADT-диаграммы отображает функцию в виде блока, а интерфейсы входа/выхода представляются дугами, соответственно входящими в блок и выходящими из него. Взаимодействие блоков друг с другом описываются посредством интерфейсных дуг, выражающих " ограничения", которые в свою очередь определяют, когда и каким образом функции выполняются и управляются;

- строгость и точность. Выполнение правил SADT требует достаточной строгости и точности, не накладывая в то же время чрезмерных ограничений на действия аналитика. Правила SADT включают:

- ограничение количества блоков на каждом уровне декомпозиции (правило 3-6 блоков);

- связность диаграмм (номера блоков);

- уникальность меток и наименований (отсутствие повторяющихся имен);

- синтаксические правила для графики (блоков и дуг);

- разделение входов и управлений (правило определения роли данных).

- отделение организации от функции, т.е. исключение влияния организационной структуры на функциональную модель.

Методология SADT может использоваться для моделирования широкого круга систем и определения требований и функций, а затем для разработки системы, которая удовлетворяет этим требованиям и реализует эти функции. Для уже существующих систем SADT может быть использована для анализа функций, выполняемых системой, а также для указания механизмов, посредством которых они осуществляются.


Руководство пользователя

Основное окно программы разделено на четыре подокна (рамки), в каждом из которых объединены по одному назначению (выдача информации, тест, листинг системного файла, стандартные системные модули Windows) модули отдельных устройств или систем устройств персонального компьютера:

- Информационные модули – выдают различную информацию (объем памяти, качество цвета и т. д.);

- Тестовые модули – тестирование отдельных модулей (логических и съемных дисков);

- Листинговые модули – показ листинга системного файла (boot.ini, autoexec.bat и др.);

- Дополнительные модули – стандартные модули в составе операционной системы Windows (дата и время, свойства системы и др.).

Объединены они для большего удобства и дабы не запутать пользователя, что он будет запускать.

Рамка (в дальнейшем «фрейм») «Информационные модули» содержит следующий перечень модулей о которых при нажатии на кнопку модуля будет выдана информация:

- Память – информация о физической памяти компьютера (полный объем, загруженность памяти и свободное пространство а так же процент используемой памяти) и сведения о файле подкачки (полный объем и др. характеристики);

- Логические диски – показывает информацию о количестве и буквенном значении логических дисков установленных на персональном компьютере, отдельно для каждого (если логический диск на компьютере не один) тип устройства, тип файловой системы на диске, полный его объем, занятое и свободное пространство, процент занятого объема, а так же системная информация такая, как количество кластеров и секторов и др.

- Съемные диски – показывает аналогичную информацию, что и модуль «Логические диски», но для съемных дисков установленных на компьютере, при этом диск должен находиться в дисководе, в противном случае программа попросит его установить.

- CD и DVD – показывает аналогичную информацию, что и два предыдущих модуля, но для CD или DVD устройств, если таковые установлены на персональном компьютере пользователя.

- Дисплей – выдает информацию о расширении экрана по горизонтали и вертикали в пикселях и миллиметрах, качество цветопередачи и количестве цветов, а так же частоту обновления экрана в Герцах и содержит список всех возможных режимов экрана доступных для дисплея.

- Сеть – показывает различную информацию о конфигурации сети компьютера. Содержит информацию об IP-адресе в десятичной и двоичной форме записи, маску подсети и другие параметры.

- Процессы – отображает список работающих программ, запущенных окон и служб работающих в фоновом режиме.

Фрейм «Тестовые модули» содержит два теста, это тест логических дисков и съемных дисков. Данные тесты показывают скорость устройств при записи на них и чтении.

Фрейм с листинговыми модулями содержит пять кнопок для отображения листинга системных файлов boot.ini, system.ini, win.ini, autoexec.nt и config.nt, в данных файлах содержится системная информация загрузки и настроек операционной системы.

Фрейм с дополнительными модулями при нажатии на одну из кнопок (назначение кнопок по надписи на них) отображают стандартные диалоговые окна операционной системы Windows, такие как:

- Свойства системы;

- Установка и удаление программ;

- Язык и региональные стандарты;

- Свойства экрана;

- Свойства Интернет-браузера;

- Свойства даты и времени;

- Свойства клавиатуры;

- Свойства мыши;

- Свойства модема (если есть модем и он подключен и установлен);


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 173; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.091 с.)
Главная | Случайная страница | Обратная связь