Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Обзор языков программирования



 

Языки программирования системного уровня

Чтобы осознать различие между языками описания сценариев и системными, полезно вспомнить историю развития последних. Впервые они появились в качестве альтернативы языкам ассемблера, позволяющим использовать в программе практически все особенности конкретной аппаратной подсистемы. Каждому утверждению такого языка соответствует ровно одна машинная команда, и программисту приходиться иметь дело с такими низко уровневыми деталями, как распределение регистров и последовательности вызова процедур. В результате написание и сопровождение крупных программ на языке ассемблера оказывается чрезвычайно сложным делом.

К концу 50-х годов начали появляться языки программирования более высокого уровня, такие как Lisp, Fortran, ALGOL. В них уже не было точного соответствия между языковыми конструкциями и машинными командами. Преобразование строк исходного кода в последовательности двоичных команд осуществлялось компилятором. Со временем их число пополнилось языками PL /1, Pascal, C, C++, Java. Все они менее эффективно используют аппаратуру по сравнению с языками ассемблера, но позволяет быстрее создавать приложения. В результате им удалось практически полностью вытеснить языки ассемблера при создании крупных приложений [2].

Языки программирования высокого уровня

Языки программирования системного уровня отличаются от ассемблеров, во-первых, тем, что они являются более высокоуровневыми, и, во-вторых, используют более строгий контроль типов. Термин “высокоуровневый” означает следующее: многие детали обрабатываются автоматически, а программисту для создания своего приложения приходится писать меньшее количество строк. В частности:

- Распределением регистров занимается компилятор, так что программисту не надо писать код, обеспечивающий перемещение данных между регистрами и памятью;

- Последовательности вызова процедур генерируются автоматически; программисту нет необходимости описывать помещение аргументов функции в стек и их извлечение оттуда;

Для описания структур управления программист может использовать также ключевые слова, как if, while; последовательности машинных команд, соответствующие этим описаниям компилятор генерирует динамически [5].

 

Языки описания сценариев

Языки описания сценариев, такие как Perl, Python, Rexx, Tcl, Visual Basic и языки оболочек UNIX, предполагают стиль программирования, весьма отличный от характерного для языков системного уровня. Они предназначаются не для написания приложения с “нуля”, а для комбинирования компонентов, набор которых создается заранее при помощи других языков. Например, Tcl, Visual Basic могут использоваться для построения пользовательских интерфейсов из имеющихся элементов управления, а языки описания сценариев для оболочек UNIX применяются для формирования “конвейеров” обработки потоков данных из набора стандартных фильтров. Языки описания сценариев часто применяются и для дополнения готовых компонентов новыми возможностями; однако эта деятельность редко охватывает создание сложных алгоритмов или структур данных, которые уже обычно бывают уже заложены в компоненты. Иногда языки описания сценариев даже называют связующими или языками системной интеграции.

Для языков описания сценариев характерно отсутствие типизации, которая только усложнила бы задачу соединения компонентов. Все элементы в них выглядят и функционируют одинаково и являются полностью взаимозаменяемыми. Например, в Tcl или Visual Basic переменная может содержать в одной точке программы строку, а в другой – целое число. Код и данные также часто бывают взаимозаменяемы. Например, Tcl, Visual Basic переменная может содержать в одной точке программы строку, а в другой - целое число. Код и данные также часто бывают взаимозаменяемы, так что программа может генерировать другую программу - и сразу же запускать ее исполнение. Обычно языки описания сценариев используют переменные строковых типов, которые обеспечивают единообразный механизм представления для различных сущностей.

Отсутствие в языке деления переменных на типы упрощает соединение компонентов между собой. Нет априорных ограничений на то, каким образом может использоваться тот или иной элемент, а все компоненты значения представляются в едином формате. Таким образом, компонент или значение могут быть использованы в любой ситуации; будучи спроектированы для одних способов применения, они могут оказаться задействованы совершенно иными, о которых их создатель никогда не помышлял. Например, в UNIX – оболочках работа любой программы – фильтра включает чтение данных из входного потока и запись их в выходной поток. Любые две такие программы могут быть связаны путем назначения выходного потока одной в качестве входного потока другой. Следующая команда оболочки представляет систему из трех фильтров, подсчитывающую в выделенном фрагменте текста строки, содержащие слово “scripting”:

Select | grep scripting | WC

Программа select считывает текст, выделенный в данный момент на экране, и выводит его свои выходной поток; фильтр grep считывает входной поток и пропускает на выход строки, содержащие слово “scripting”; а программа wc подсчитывает число строк в своем потоке. Любой из подобных компонентов может найти применение во множестве различных ситуации, решая каждый раз иную общую задачу. Сильная типизация языков программирования системного уровня затрудняет повторное использование кода. Она поощряет программистов к созданию большого количества несовместимых друг с другом интерфейсов, каждый из которых требует применение объектов своего типа. Компилятор не позволяет объектам других типов взаимодействовать с этим интерфейсом, не смотря на то, что результат, мог бы оказаться и весьма полезным. Таким образом, чтобы использовать новый объект с существующем интерфейсом, программисту приходится писать “переходник”, преобразующий объект к типу, на который рассчитан интерфейс. А применение “переходника” требует, в свою очередь, перекомпиляции части или даже всего приложения целиком. Доминирующий в настоящее время способ распространения ПО в виде двоичных файлов делает этот подход невозможным.

Чтобы оценить преимущества бес типового языка программирования, рассмотрим следующий пример на языке Tcl:

Button.b –text Hello! -font {Times 16} – command {puts hello}

Эта команда создает на экране новую кнопку с надписью на ней Hello! шрифтом Times 16 пунктов, при нажатии, на которую выводится короткое сообщение hello. В одной строке здесь уместилось шесть элементов различных типов: название команды (button), название кнопки (. b), идентификаторы атрибутов (-text, -font, -command), простые строки (Hello! hello), спецификация шрифта (Times 16), состоящая из названия начертания (Times) и размера в пунктах (16), а также целый Tcl-сценарий (puts hello). Все элементы представляются единообразно – в виде строк. В данном примере атрибуты могли быть перечислены в произвольном порядке, а неупомянутым атрибутам (их насчитывается более двадцати) будут присвоены значения по умолчанию.

В случае реализации на Java тот же самый пример потребовал бы семи строк кода, составляющих два метода. Для С++ с использованием библиотеки Microsoft Foundation Classes (MFC) масштабы увеличились примерно до двадцати пяти строк кода, образующих три процедуры. Один только выбор шрифта требует нескольких обращении к функциямMFC

Cfont *fontPtr=new Cront ();

fontPtr-> Crete Font (16, 0, 0, 0, 700,

0, 0, 0, ANSI_CHARSET,

OUT_DEFAULT_PRECIS,

CLIP_DEFAULT_PRECIS,

DEFAULT_QUALITY,

DEFAULT_PITCH|

FF_DONTCARE,

“Times New Roman”);

buttonPtr-> SetFont(fontPtr);

Можно было бы обойтись без значительной части этого кода, если бы не строгая типизация. Чтобы задать шрифт для кнопки, необходимо обратиться к методу Set Font; однако он требует передачи в качестве аргумента указателя на объект Cfont. Приходиться объявлять и инициализировать новый объект. Инициализацию объекта Cfont выполняет его метод Create Font, который имеет жесткий интерфейс, требующий задания 14 различных аргументов. В TCL существенные характеристики шрифта (начертание Times и кегль 16 пунктов) могут быть указаны непосредственно без каких-либо объявлений или преобразовании. Более того, TCL позволяет описать и поведение кнопки непосредственно в теле создающей ее команды, тогда как в С++ или Java для этого необходим отдельный метод [3].

 

Другие языки

Существует огромное количество атрибутов, помимо степени строгости контроля типов или уровня языка, и есть очень много интересных примеров, которые не могут быть однозначно отнесены к одной из двух рассмотренных нами категории. Например, семейство Lisp занимает некоторое промежуточное положение, обладая атрибутами языков описания сценариев и языков программирования системного уровня. В Lisp впервые были реализованы такие концепции, как интерпретация и динамический контроль типов, которые широко используются в современных языках описания сценариев, А также автоматическое управление хранением и интегрированные среды разработки, применяемые в языках обеих категории [7].


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 164; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь