Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Наименование, шифр и основание для выполнения ОКР



Аннотация

 

УДК 621.396.

Хомутовский Ю.А.

Разработка конструкции блока обмена сообщениями коммутационной станции. Дипломный проект по специальности '' Проектирование и производство РЭС ".-Мн.: БГУИР, 2001.- с.

В дипломном проекте произведена разработка схемы электрической принципиальной и конструктивного исполнения блока обмена сообщениями коммутационной станции, описаны его электрические и конструкторские параметры и характеристики. В ходе выполнения дипломного проекта проведен литературный обзор аналогичных устройств. Проведены конструкторские расчеты и расчет комплексного показателя технологичности. Также приведено технико-экономическое обоснование разработки и изложены вопросы охраны труда и экологической безопасности. Для изготовления данного устройства разработана конструкторская документация.

Ил.-, табл.-, прилож.-, список лит.- назв.,

графическая часть - л. А1.


СОДЕРЖАНИЕ

 

Введение

1 Техническое задание

1.1 Наименование, шифр и основание для выполнения ОКР

1.2 Цели, задачи, назначение ОКР

1.3 Технические требования

1.4Требования к программному обеспечению

1.5 Требования к надежности

1.6 Требования к технологичности

1.7 Требования к уровню унификации и стандартизации

1.8 Требования к безопасности и экологии

1.9 Эстетические и эргономические требования

1.10 Требования к патентной чистоте

1.11 Требования к маркировке и упаковке

1.12 Требования к транспортированию, эксплуатации, хранению, ремонту

2 Анализ исходных данных и основные технические требования предъявляемые к конструкции

2.1 Краткие сведения об электронных системах коммутации

2.2 Патентный поиск

2.3 Анализ климатических факторов

2.4 Анализ дестабилизирующих факторов

2.5 Описание общей структуры АТС

2.6 Описание БОС

3 Выбор и обоснование элементной базы, унифициронанных узлов установочных изделий и материалов конструкции

3.1 Обоснование выбора элементной базы

3.2 Анализ элементов на устойчивость к внешним воздействиям

3.3 Описание материалов конструкции

4 Выбор и обоснование компоновочной схемы, методов и принципов конструирования

4.1 Анализ существующих принципов конструирования

4.2 Общие требования к конструкции АТС

4.3 Описание конструкции шкафа

4.4 Описание конструкции кассеты

4.5 Описание конструкции блока

4.6 Компоновка шкафа

5 Выбор способов и средств теплозащиты, герметизации, виброзащиты и экранирования

5.1 Выбор элементов, для которых необходимо проведение подробного расчета теплового режима

5.2 Выбор способа охлаждения на ранней стадии проектирования

5.3 Выбор способов герметизации

5.4 Обоснование необходимости защиты от механических воздействий

5.5 Обоснование необходимости экранирования

6 Расчет конструктивных параметров изделия

6.1 Компоновочный расчет

6.2 Расчет теплового режима

6.3 Расчет конструкторско-технологических параметров

6.3.1 Выбор и обоснование методов изготовления ПП

6.3.2 Расчет параметров печатного монтажа

6.4 Полный расчет надежности

6.5 Расчет электромагнитной совместимости

7 Обоснование выбора средств автоматизированного проектирования

8.Разработка технологического процесса сборки и монтажа

8.1 Расчет показателей технологичности

8.2 Разработка технологической схемы сборки блока

9.Технико-экономическое обоснование

9.1 Краткая экономическая характеристика проектируемого устройства

9.2 Прогноз объема продаж и расчетного периода

9.3 Расчет себестоимости товара и его рыночной цены

9.4 Расчет сметной стоимости НИОКР

9.5 Расчет стоимостной оценки затрат

9.6 Расчет экономического эффекта

10.Охрана труда и экологическая безопасность

11 Анализ и учет требований эргономики и технической эстетики

Заключение

Литература


ВВЕДЕНИЕ

 

Научно-техническая революция сопровождается значительным ростом объема передаваемой информации и требований к качеству связи. Эти требования сводятся прежде всего к созданию экономичных сетей связи за счет внедрения наиболее прогрессивных систем передачи и распределения информации, которые обеспечивают повышение эффективности сети связи по всем технико-экономическим показателям. Наиболее прогрессивными системами распределения информации в настоящее время являются электронные системы коммутации различного типа.

Среди электронных систем коммутации общепризнанно технико-экономическое преимущество цифровых методов перед другими методами благодаря относительной простоте технической реализации, высокой помехоустойчивости, интеграции способов представления информации в одной форме и практически оптимальному объему памяти хранения информации. В настоящее время происходит интенсивное внедрение в существующие сети связи цифровых методов передачи, распределения и обработки информации. В наибольшей степени преимущества цифровых методов сказываются при построении цифровых сетей связи с интеграцией служб, где информация любого вида передается в единой цифровой форме и для обслуживания различных заявок используются одни и те же цифровые соединительные пути. Практически процесс интеграции подходит к тому, что исчезнут всякие различия в обслуживании различных видов связи.

При разработке цифровых сетей связи с интеграцией служб следует учесть, что существуют различные требования к виду связи, услугам, вероятностно-временным характеристикам и др. Отличительной особенностью архитектуры сетей интегрального обслуживания является функция определения вида информации. Речь и данные, совместившись в общих каналах, передаются и коммутируются по сети связи одинаково, однако, исходя из особенностей передачи речи, требования к задержкам речи и данных существенно различны. Кроме того, речевая информация в силу своей избыточности не требует защиты от ошибок, а в случае передачи данных при поражении информации требуется повторная передача.

Хотя большую часть информации (до 80...90%) человек получает через зрение, наиболее удачным ее видом для передачи на расстояния по технико-экономическим соображениям является речь. Не случайно объем речевых сообщений, передаваемых по сетям, на один-два порядка превосходит объем всех других видов сообщений. Поэтому технико-экономические показатели сети связи в значительной мере определяются теми решениями, которые заложены при проектировании электронных автоматических телефонных станций (ЭАТС).

Таким образом, основными преимуществами цифровых АТС являются: снижение трудовых затрат на изготовление электронного коммутационного оборудования за счет автоматизации процесса их изготовления и настройки; уменьшение габаритных размеров и повышение надежности оборудования за счет использования элементной базы высокого уровня интеграции; уменьшение объема работ при монтаже и настройке электронного оборудования в объектах связи; существенное сокращение штата обслуживающего персонала за счет полной автоматизации контроля функционирования оборудования; повышение качества передачи и коммуникации; увеличение вспомогательных и дополнительных видов обслуживания абонентов и др.

 


1. ТЕХНИЧЕСКОЕ ЗАДАНИЕ

 

Наименование, шифр и основание для выполнения ОКР

 

Разработка центральной АТСЭ для сельской телефонной сети.

Основанием для разработки является программа курса " Конструирование РЭА и автоматизация производства" для высших учебных заведений, утвержденная Министерством образования Республики Беларусь.

 

Требования к надежности

 

Средняя наработка на отказ станции То, не менее 10 лет ( 87600 ч),

Среднее время восстановления работоспособности станции Тв.с., после отказа не более 0, 5 ч.

Коэффициент простоя станции Кп, не более 5*10-6.

Показатели надежности станции на всех этапах разработки испытаний подтверждаются расчетным методом.

 

Требования к технологичности

 

Нормативное значение показателя технологичности должно соответствовать ОСТ 107.15.2011 -86.

 

Требования к уровню унификации и стандартизации

 

Количественные показатели уровня унификации и стандартизации должны быть не менее Кпр> 20%, Кповт> 1, 25, Кму> 30%.

 

Требования к безопасности и экологии

 

Конструкция оборудования должна обеспечивать безопасное его обслуживание в соответствии с требованиями ГОСТ 12.2.003-74, ГОСТ 12.2.007-75, ГОСТ 12.2.006-87.

Все открытые токоведущие части, находящиеся под напряжением свыше 42 В, доступные для случайных прикосновений, должны быть закрыты считками,

Конструкция оборудования должна обеспечить пожарную безопасность в соответствии с требованиями ГОСТ 12.1.004-91.

Материалы, применяемые для изготовления составных частей (печатные платы) в части обеспечения требуемой огнестойкости должны соответствовать ТУ2296-001-00213060-94 и ТУ2296-005-00213060-96.

Требования к АТСЭ по факторам, воздействующим на здоровье людей и безопасность окружающей среды (ЭМИ, статистическое электричество, электрическое поле промышленной частоты, световое излучение, шум ) согласно САНПИН 9-20-95.

 

1.9 Эстетические и эргономические требования

 

Требования по технической эстетике и эргономике должны соответствовать ОСТ 4.270.000-83.

 

Требования к патентной чистоте

 

АТСЭ должна обладать патентной чистотой относительно ведущих стран в данной области техники.

 

Требования к маркировке и упаковке

 

Маркировка оборудования должна отвечать требованиям ГОСТ 20.39.308-76.

Маркировку следует наносить на несъемных частях доступных для обзора.

Упаковка оборудования должна соответствовать требованиям ГОСТ 15150-69 исполнение УХЛ4.2.


Требования к транспортированию, эксплуатации, хранению, ремонту

 

Хранение и транспортирование АТСЭ должны соответствовать требованиям ГОСТ 15150-69 исполнение УХЛ4.2.

Климатические условия эксплуатации АТСЭ должны соответствовать требованиям ГОСТ 15150-69 исполнение УХЛ4.2.

В процессе эксплуатации замена неисправного оборудования должна производиться на уровне съемных блоков, масса которых не должна превышать 15 кг.

 


АНАЛИЗ ИСХОДНЫХ ДАННЫХ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ К РАЗРАБАТЫВАЕМОЙ КОНСТРУКЦИИ

 

Патентный поиск

 

В настоящее время имеется большое количество изобретений в области телефонии.

Японскими изобретателями разработана электронная АТС которая содержит блок управления, подготавливающий информацию об общем количестве выходных данных на основе проведенных измерений и количестве выходных устройств [2]. Затем блок управления определяет оптимальное начальное время передачи выходных данных, оптимальный период передачи данных и генерирует статистические данные, которые поступают на выходные устройства.

АТС [3] оборудована устройством для регистрации вызовов, поступающих из магистральных линий и устройством передачи соответствующего сигнала в микропроцессор. Последний вырабатывает тональный сигнал входного вызова и передает его на модуль с громкоговорителем для последующей передачи речевых сообщений в линию в заданное время.

Также японскими разработчиками предложена телефонная сеть, обеспечивающая обслуживание стандартных телефонных аппаратов с использованием устройства для регистрации идентификаторов внешних линий и выполнения операций по установлению соединений или их прерыванию [4].

В телефонной системе связи [5] вызывающая сторона посылает вызов, содержащий ее телефон и данные адреса, которые записываются в память принимающего аппарата. Кроме того, принимающий аппарат записывает дату и время поступления вызова. При ответе на вызов запись даты и времени поступления вызова стирается из памяти. В результате в памяти остается информация только о тех вызовах, на которые пользователь не ответил. Записанную информацию можно вывести на индикатор,

В Германии разработана цифровая система связи [6], в которой на стороне приема производят определение импульсной реакции канала. Для сегментов сигнала с произвольной последовательностью символов импульсную реакцию получают на основе функции перекрестной корреляции этой последовательности символов с соответствующим сегментом считанного принятого сигнала с помощью корректирующих звеньев, содержащих побочные величины функции автокорреляции последовательности символов. Особенно хорошую оценку импульсной реакции дает итеративная процедура. Для коротких последовательностей импульсов предпочтительным является отслеживание импульсной реакции.

Система связи [7] содержит контроллеры вызовов и контроллеры соединений для управления коммутирующими устройствами. Управление связью между оконечным оборудованием осуществляется путем управления состоянием вызовов и обменом управляющих сообщений. Контроллеры соединений управляют установлением или разъединением соединений через коммутирующие устройства. Такое устройство обеспечивает эффективное использование ресурсов для управления коммутирующей аппаратурой.

 

Описание конструкции шкафа

 

Шкаф предназначен для размещения в нем блоков электроники и питания, рисунок 2.

Габаритные размеры шкафа:

- высота - 2200 мм;

- ширина - 986 мм;

глубина - 520 мм.

Шкаф конструктивно состоит из каркаса, боковых обшивок, передней и задней дверей. Каркас выполнен в виде верхней и нижней рам, боковых стоек, верхней и нижней обшивок. Рамы выполнены из одного типа трубы прямоугольного сечения.

Крепления стоек в каркасе к верхней и нижней рамам осуществляется 16-ю болтами М8.

Передняя и задняя стороны шкафа закрываются дверьми, которые крепятся в шкафу при помощи двух торцовых осей и замка с тягами.

Боковые обшивки к стойкам каркаса крепятся при помощи 4-х винтов М8.

Двери представляют собой глухую по высоте листовую сталь с приваренными угольниками, на которых располагаются контактирующие пружины. При помощи этих пружин осуществляется контакт между боковыми обшивками, передней и задней дверьми.

В шкафу обеспечивается электрический контакт между каркасом, боковыми обшивками, передней и задней дверьми.

Для осуществления естественной конвекции воздуха в верхней и нижней обшивках каркаса и дверях предусмотрены вентиляционные отверстия,

В шкафу предусматривается возможность установки дефлекторных пластин для перераспределения воздушных потоков.

Максимальный вес оборудованного шкафа не более 250 кг.

 

Описание конструкции блока

 

Блок состоит из платы печатного монтажа размером 233, 35 х 280 мм, на которую устанавливается пластмассовая лицевая панель и два или один электрический соединитель.

На лицевой панели установлены две защелки, которые служат для закрепления блока в каркасе кассеты.

На панели имеются два уступа, служащие для извлечения блока из каркасов или шкафов с помощью съемника.

Если на лицевой панели устанавливаются органы управления и сигнализации, между держателями устанавливается планка, на которой крепятся элементы сигнализации. Соединители устанавливаются вдоль стороны 233, 35 мм и крепятся заклепками. Электрическое соединение с ПП осуществляется пайкой в печать.

 

Компоновка шкафа

 

Оборудование в виде блоков размещено в кассетах в шкафу. Каждая кассета образует функционально и конструктивно законченное устройство. Сочетание блоков и их количество в устройствах может изменятся в зависимости от емкости конкретной станции и ее конфигурации. При этом монтажных и конструктивных изменений не требуется. При необходимости в

шкафу при наличии места могут быть размещены дополнительно устройства без каких-либо конструктивных доработок.

В верхней части шкафа установлен швеллер. На нем размещена панель ввода питания, блоки предохранителей с устройствами сигнализации их перегорания и 2 распределительные колодки. На панели ввода расположены клеммы для подключения питания 60 В. С распределительных колодок напряжение - 60 В подается непосредственно на источник вторичного электропитания, а + 60 в на блоки предохранителей. Блоки предохранителей содержат предохранители и схему сигнализации перегорания предохранителей. Блок состоит из лицевой панели, на которой расположен предохранитель, выключатель, при помощи которого можно отключить подаваемое напряжение + 60 В, и светодиод, сигнализирующий перегорание предохранителя, а также печатной платы, на которой размещены схема сигнализации и клеммы, при помощи которых осуществляется подключение блока к плате ввода и вторичному источнику питания.

На каркасе шкафа вдоль вертикальных стоек расположены корпусные шины. Связи их с устройствами осуществляются при помощи кабельных перемычек с наконечниками на концах.

Каркас также имеет клемму с резьбой М6 для подключения защитного заземления.

Все токопроводящие части с напряжением выше 42 В защищены от случайного прикосновения к ним обслуживающего персонала.

 


Выбор способов герметизации

 

Основная цель герметизации - предотвращение воздействия внешних

климатических факторов.

Выбор способа герметизации обуславливается совокупностью требований к конструкции: условиями реализации нормального теплового режима, ремонтопригодностью, элементоемкостью реализуемой схемы, плотностью компоновки, рядом эксплуатационных требований (изменение барометрического давления, механические воздействия, перепады температур) и надежностью [13].

В зависимости от степени чувствительности тех или иных элементов или узлов к воздействию агрессивной среды и от их конструктивных особенностей применяют различные способы герметизации, отличающиеся как методом исполнения, так и сложностью и стоимостью.

Известны способы герметизации с помощью:

- изоляционных материалов;

- непроницаемых для газов оболочек.

Защита изделий изоляционными материалами может производится пропиткой, заливкой, обволакиванием и опрессовкой [11].

Пропитка изделий состоит в заполнении имеющихся в них каналов электроизоляционным материалом. Одновременно с заполнением каналов при пропитке на всех элементах конструкции образуется тонкий изоляционный слой, защищающий их от воздействия агрессивной среды. Одновременно с защитными функциями пропиточный материал повышает электрическую прочность изделия, скрепляет механически его отдельные элементы, во многих случаях улучшает теплопроводность. Пропитку осуществляют погружением изделий в жидкий изоляционный материал. После извлечения изделия материал отвердевает. Процесс отвердения может проходить при нормальной температуре или с внешним подогревом.

При выборе материалов для пропитки необходимо учитывать их нейтральность к элементам пропитываемого изделия, нетоксичность, влаго- и нагревостойкость.

При герметизации заливкой все свободные полости в изделии, в том числе и пространство между элементами и корпусом, заливают электроизоляционным материалом, который после отвердения образует достаточно толстый защитный слой. Так как заливочный материал имеет большую массу, то при отвердении в нем возникают внутренние напряжения, которые в ряде случаев могут отрицательно сказаться на работоспособности аппаратуры. Поэтому для устройств, чувствительных к таким напряжениям, следует применять пластичные электроизоляционные материалы, которые, полемеризуясь, образуют упругую резинообразную массу. Обычно заливка составляет 10-20% общего объема изделия, что существенно увеличивает его массу. Поэтому там, где это необходимо, следует применять пенообразующие материалы, содержащие большое число несоединяющихся воздушных полостей.

Герметизация обволакиванием по технике исполнения аналогична операции пропитки, однако здесь используют вязкие изоляционные материалы, обладающие хорошей адгезией к элементам изделия. Слой материала, образующегося на поверхности деталей, сравнительно толст и надежно защищает их от воздействия агрессивной среды.

Опрессовку деталей и узлов производят в специальных формах термопластичными массами. Однако этот способ герметизации не получил большого распространения.

Защита изделий непроницаемыми для газов оболочками - наиболее совершенный способ защиты узлов и устройств, так как кроме эффективной защиты он может обладать возможностью разгерметизации в производственных условиях и при эксплуатации.

Условия нормальной работы изделий, защищенных вакуумно-плотной герметизацией, зависят не только от качества герметизации, но и от защиты от агрессивных компонентов, входящих в материалы и среду защищаемого объема. Выделение свободных молекул воды и других агрессивных веществ в герметизированном объеме изделия может свести к минимуму эффективность вакуумноплотной герметизации.

При разработке герметичных корпусов следует учитывать условия эксплуатации и прежде всего изменение барометрического давления, внешние механические воздействия и возможные перепады температуры. Вакуумно-плотная герметизация может быть выполнена с неразъемными и разъемными швами: первую используют для защиты малогабаритных узлов и устройств, вторую - для сравнительно больших блоков, требующих профилактической проверки и нуждающихся в смене ее отдельных элементов. Неразъемные герметичные конструкции делают со швами, выполняемыми пайкой, сваркой, клепкой, заливкой, склеиванием или замазкой специальными компаундами.

В разъемных герметичных конструкциях между соединяемыми деталями (корпусом и крышкой) помещают эластичную прокладку, а в герметизированный объем влагопоглотитель. Условие непроницаемости такого герметичного соединения - сохранение во все время его службы контактного давления между прокладкой и соединяемыми поверхностями.

 

Компоновочный расчет

 

Под компоновкой понимается процесс размещения комплектующих модулей, ЭРЭ и деталей на плоскости или в пространстве с определением основных геометрических форм и размеров. При компоновке должны быть учтены требования оптимальных функциональных связей между модулями, их устойчивость и стабильность, требования прочности и жесткости, помехозащищенности и нормального теплового режима, требования технологичности, эргономики, удобства эксплуатации, ремонта.

Блок обмена сообщениями разработан в виде ТЭЗа, что предопределяет его конструктивные особенности. Конструкция типовых элементов замены предусматривает размещение в ней печатной платы, соответствующей международному стандарту с размерами 233, 35 х 280 мм. Таким образом, нам необходимо определить разместятся ли элементы БОС на одном ТЭЗе или необходимо разбиение его на несколько ТЭЗ, Для этого рассчитаем установочную площадь элементов блока по формуле:

 

,                                    (6.1)

 

где S - полная установочная площадь элементов;

Sycm - площадь установки i -готипоразмера;

п - количество элементов i - го типоразмера;

N - число типоразмеров.

Исходные данные для расчета сведены в таблицу 5.

Сложив установочные площади всех элементов получим 8=21308, 4 мм2. Площадь печатной платы S=65338 мм2 Таким образом, можно сделать вывод о том, что все элементы БОС, с большим запасом, можно скомпоновать на печатной плате заданных размеров.

 

Расчет теплового режима

 

Блок РЭА представляет собой сложную систему тел с множеством внутренних источников теплоты. Точное аналитическое температурных полей внутри блока невозможно из-за громоздкости задачи и неточности исходных данных: мощности источников теплоты, теплофизических свойств материалов, размеров границ. Поэтому при расчете теплового режима блоков РЭА используют приближенные методы анализа и расчета. Целью расчета является определение температур нагретой зоны и среды вблизи поверхности РЭА.

 

Таблица 6.1 - Данные для компоновочного расчета.

№ п/п Тип элемента Кол, n SУСТ, мм2 SУСТ· n, мм2
1 Генератор ГК 1 –07 1 300 300
2 Диод 2Д522Б 1 25 25
3 Индикатор единичный АЛ307БМ 1 42 42
4 Конденсатор К 10- 17- 16-М 1500 1 33, 8 33, 8
5 Конденсатор К 1 0- 1 7- 1 6-Н90 63 33, 8 2129, 4
6 Конденсатор К 1 0- 1 7-26-Н90 1 180 180
7 Конденсатор К53-4А-16В 4 76, 5 306
8 Микросхема АВ2 1 78, 8 78, 8
9 Микросхемы ООТО, 04ТО, 74ТО, 10ТО, 08ТО, 03WO, 32ТО, 90ТО, 64МО 18 146, 3 2633, 4
10 Микросхемы UC2, 85ТО, 55МО, 38МО, 75МО, 61МО, 57NO, 66МО, 75NO 24 150 3600
11 Микросхемы С584, 73DO, 45NO, 40QO 20 183, 8 3676
12 Микросхемы 09 1 0, С453 3 480 1440
13 Микросхемы 0970, С451, С559, 4 525 2100
14 Розетка соединительная РС-28-7 2 712, 5 1425
15 Розетка соединительная РС-40-7 1 1016, 5 1016, 5
16 Набор резисторов HP 1-4-9 1 67, 5 67, 5
17 Резистор С2-ЗЗН 5 25 125
18 Резонатор РК169МА 1 230 230
19 Соединитель СНП 221-64 2 950 1900

 

Исходными данными для расчета теплового режима блока в перфорированном корпусе является:

- мощность, рассеиваемая в блоке P 3, Вт;

- мощность, рассеиваемая рассчитываемыми элементами P эл, Вт;

- размеры корпуса блока l 1, l 2, l 3 , м;

- площадь поверхности элементов S ЭЛ, м2;

- коэффициент заполнения К 3;

- площадь перфорационных отверстий S П, м;

- давление окружающей среды H 1, Па;

- температура окружающей среды T C К.

Последовательность расчета.

Рассчитываются: поверхность корпуса блока по формуле

 

 ;                         (6.2)

 

условная поверхность нагретой зоны по формуле:

 

 ;                                (6.3)

 

удельная мощность корпуса блока по выражению:

 

;                                                (6.4)

 

удельная мощность нагретой зоны по формуле:

 

;                                                 (6.5)

 

2. Находятся коэффициенты ζ 1 и ζ 2 в зависимости от удельной мощности блока корпуса блока и удельной мощности нагретой зоны [12].

3. Находятся коэффициенты, зависящие от атмосферного давления окружающей среды, КН1 - КН2 = 1, 0.

4. Рассчитывается коэффициент перфорации по формуле

 

;                                             (6.6)

 

5. Находится коэффициент Кп в зависимости от коэффициента перфорации.

6. Определяется перегрев корпуса блока по формуле

 

;                                       (6.7)

 

7. Определяется перегрев нагретой зоны по формуле

 

;                 (6.8)

 

8. Определяется средний перегрев воздуха в блоке

 

;                                               (6.9)

 

9. Рассчитываются: удельная мощность элементов по формуле

 

;                                        (6.10)

 

перегрев поверхности элементов по формуле

 

;                  (6.11)

 

перегрев окружающей среды у элементов по формуле

 

;           (6.12)

 

10. Находятся температура корпуса блока по выражению

 

;                                 (6.13)

 

температура нагретой зоны по формуле

 

;                                     (6.14)

 

температура поверхности элементов по формуле

 

;                           (6.15)

 

средняя температура воздуха в блоке

 

;                           (6.16)

 

температура окружающей среды у элементов

 

;                               (6.17)

 

Расчет теплового режима произведен при помощи ЭВМ. Исходные данные и результаты расчета приведены в приложении.

 

Полный расчет надежности

 

Расчет выполняется на заключительной стадии проектирования, когда имеется (по результатам соответствующих расчетов) точная информация об условиях работы элементов с учетом влияния внешних и внутренних воздействующих факторов (температуры, вибраций, влажности и т.п.) [16].

Расчет выполняется для периода нормальной эксплуатации при следующих основных допущениях:

- отказы случайны и независимы;

- учитываются только внезапные отказы;

-имеет место экспоненциальный закон надежности.

При полном расчете надежности учитываются не только электрической схемы, но и элементы конструкции (монтажные соединения, печатные платы, монтажные проводники, несущие конструкции и т.д.). Кроме того, при полном расчете надежности учет электрического режима и эксплуатационных условий работы элементов должен быть произведен точно.

Исходными данными для полного расчета надежности устройства должны быть следующие:

1. Электрическая принципиальная схема и перечень используемых в конструкции элементов.

2. Значения коэффициентов электрической нагрузки элементов. Если по результатам разработки схемы устройства эти данные отсутствуют, то значения коэффициентов электрических нагрузок должны быть рассчитаны путем сравнения расчетных уровней нагрузок элементов схемы с рабочими характеристиками соответствующих элементов конструкции.

3. Справочные значения интенсивностей отказов элементов.

4. Условия эксплуатации элементов с учетом внешних и внутренних воздействующих факторов.

5. Заданное время работы, t [17].

Последовательность расчета:

1. Принимают решение о том, какие факторы, кроме коэффициента электрической нагрузки, будут учтены.

Используя результаты конструкторских расчетов, определяют значения параметров, описывающих учитываемые факторы, причем эти значения желательно иметь для каждого элемента.

2. Формируются группы однотипных элементов.

Признаками объединения элементов в одну группу в данном расчете является не только функциональное назначение элемента, но и примерное равенство коэффициентов электрической нагрузки и параметров, описывающих другие учитываемые эксплуатационные факторы.

Если для элементов одного и того же функционального назначения значения КН0.05 … 0.1, то такие элементы по коэффициенту электрической

нагрузки допускается объединять в одну группу.

3. Определяется суммарная интенсивность отказов элементов с учетом коэффициентов электрической нагрузки и условий их работы в составе устройства. Пользуются формулами

 

;                               (6.23)

;                                (6.24)

 

где λ j ( v ) - интенсивность отказов элементов j - группы с учетом электрического режима и условий эксплуатации;

λ oj - справочное значение интенсивности отказов элементов j-й группы, j=1, …, k;

nj - количество элементов в j-й группе, j=l, …, к;

к - число сформированных групп однотипных элементов;

а(хi) - поправочный коэффициент, учитывающий влияние фактора xi , i =1, …, m;

т - количество принимаемых во внимание факторов.

4. По общепринятым формулам для экспоненциального распределения подсчитывают показатели T 0, PΣ ( t з ), Tcp, Tγ .

5. Подсчитывают показатели восстанавливаемости РЭУ. Среднее время восстановления рассчитывают по формуле:

 

;                         (6.25)

 

Вероятность восстановления РЭУ за заданное время t3 рассчитывают в предположении, что время восстановления распределено по нормальному закону по выражению

 

;                            (6.26)

 

Данные необходимые для полного расчета надежности сведены в таблицу 6.

Расчет произведен при помощи ЭВМ. Результаты расчета приведены в приложении.

 

АНАЛИЗ И УЧЕТ ТРЕБОВАНИИ ЭРГОНОМИКИ И ТЕХНИЧЕСКОЙ ЭСТЕТИКИ

 

Эргонометрические требования и требования технической эстетики к изделиям (системам " человек-машина" ) должны быть направлены на повышение эффективности деятельности и сохранение здоровья оператора взаимодействующего с изделием, за счет оптимизации:

- структуры взаимодействия операторов и операторов и технических средств деятельности;

- физической, информационной, психологической, умственной нагрузок оператора;

- условий деятельности, поддержания и восстановления здоровья и работоспособности операторов;

- уровня профессиональной подготовки операторов. [20] Эргонометрические требования должны обеспечивать:

- распределение функций между операторами и техническими средствами в соответствии с их преимущественными возможностями и степенью ответственности решаемых задач;

- соответствие системы отбора, подготовки и организации деятельности операторов возложенным на них функциям и заданному качеству деятельности (быстродействию,    точности, надежности, производительности, согласованности операторов и т.п.);

- достаточность и достоверность информации о состоянии управляемого объекта, возможность предвидения направлений развития управляемого процесса, оптимальность состава, содержания, степени обобщения и детализации информации;

- рациональную и устойчивую рабочую позу оператора, экономию физических усилий при эксплуатации, проведению профилактики и ремонта изделий, а также равномерное распределение физической нагрузки на различные части тела оператора;

- оптимальное сочетание визуальных, акустических, тактильных и других видов сигналов, их быстрое и надежное обнаружение, различие, опознание и дифференцирование в различных условиях, в том числе и в условиях помех;


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 643; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.169 с.)
Главная | Случайная страница | Обратная связь