Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Указания к выполнению курсовой работы



 

В случае теплопередачи через некоторый теплообменный элемент, представляющий из себя многослойную стенку, приходится решать задачу в следующей постановке (рисунок 3.6).


t

Рабочее про-           1 2 і n-1 n               Охлаждаемый

странство                                                      канал

δ 1 δ 2

γ 0                                            γ n

Рисунок 3.6. - Схема элемента теплообменной поверхности

 

 (3.8)

 

где di – толщина i – го слоя;

l i – коэффициент теплопроводности i – го слоя;

tг, tн – температура газа в рабочем пространстве и температура насыщения соответственно;

a п – коэффициент теплоотдачи к пароводяной смеси;

qконв, qизл – конвективная и лучистая составляющая тепловой нагрузки на теплообменную поверхность.

Решение системы уравнений (3.8), нелинейной из-за зависимости l i = l i (t) и присутствия в граничных условиях лучистой составляющей qизл, требует организации итерационного процесса. Это связано с тем, что от параметров искомого поля температур зависят теплофизические характеристики и интенсивность лучистого теплообмена (~ Т4г). Многократное использование одного алгоритма для нахождения решения (итерационный процесс) удобно осуществлять с помощью ЭВМ. Рассмотрим более подробно алгоритмы расчёта характеристик испарительного охлаждения рассматриваемого элемента теплообменной поверхности.

Из решения системы уравнений (3.8) можно определить тепловой поток, проходящий через многослойную стенку

 

 (3.9)

 

 - коэффициент радиационно – конвективного теплообмена.

Для удобства представления принято

 

 (3.10)

 

Выражение, определяющее плотность лучистого теплового потока, приведено к форме Ньютона – Рихмана

 

 (3.11)

 

Таким образом, для расчёта  по формуле (3.9) необходимо рассчитать коэффициенты переноса из рабочего пространства, через теплообменную систему и к охлаждающему тракту.

Определение коэффициентов переноса

А. Теплообмен из объёма печи (газовая сторона).

Перенос энергии от горячих газов к теплообменной поверхности балки осуществляется как конвекцией, так и излучением. Суммарный коэффициент теплоотдачи представлен в виде

 

 

 - коэффициент конвективного теплообмена;

 - приведенный коэффициент теплообмена излучением.

Для выбора критериального уравнения (гл. 2) необходимо рассчитать критерии

 

 - критерий Прандтля;

 

 - коэффициент кинематической вязкости;

 - коэффициент температуропроводности газов;

 

 - критерий Рейнольдса;

 - критерий Нусельта;

 - при температуре стенки или

 (3.12)


Таким образом, для определения  нужны следующие характеристики смеси газов , , , расчёт см. раздел 2.3. , , ,  - выбираем по справочникам [2], [3].

Коэффициент температуропроводности определим по формуле:

 

 

Определение приведенного коэффициента теплообмена излучением см. 3.1. Б. Теплообмен со стороны охлаждающей воды см. раздел 2.4.

Порядок расчёта

Коэффициенты переноса являются функцией неизвестных параметров температуры стенки и удельной плотности теплового потока. Поскольку в этом случае получение аналитического решения затруднительно, воспользуемся методом последовательных приближений для нахождения инженерного решения:

задаёмся  в первом приближении;

по заданному материалу балки, рабочей температуре и составу накипи выбираем  [3, 5];

рассчитываем коэффициенты теплообмена ; (гл. 1, 2, 3);

по известным термическим сопротивлениям теплопередачи рассчитываем  и получаем  во втором приближении (гл.1);

проверка окончания итерационного процесса.

 


если условие не выполняется, повторяем расчёт, начиная с выбора ;

после окончания итерационного процесса рассчитываем выход насыщенного пара;

проверка на устойчивость [3], [5], [6].

 


РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

 

1. Вукалович М. П. Термодинамические свойства газов. – М.: Машгиз; 1959. – 457 С.

2. Кутателадзе С. С., Боришанский В. М. Справочник по теплопередаче. - М.: Гостехиздат, 1959.- 414 С.

3. Казанцев Е. И. Промышленные печи. - М.: Металлургия, 1975.- 368 С.

4. Миснар В. Д. Теплопроводность твёрдых тел, газов и жидкостей. - М.: Наука, 1973. – 445 С.

5. Исаченко В. П. Теплопередача. – М.: Энергия, 1969. – 439 С.

6. Ривкин С. Л., Александров А.А. Теплофизические свойства воды и водяного пара. – М.: Энергия, 1980. – 80 С.

7. Крейт Ф., Блэк У. Основы теплопередачи. – М.: Мир, 1983. – 511С.


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 172; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.024 с.)
Главная | Случайная страница | Обратная связь