Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Механические переходные процессы электропривода



 

 

Изменения управляющего или возмущающего воздействия вызывают в механической части электропривода переходные процессы, в течение которых скорости движения связанных масс изменяются от начальных значений, определяемых начальными условиями, к установившимся значениям, заданным новыми воздействиями на систему В качестве простейших примеров рассмотрим ряд переходных процессов в механической части электропривода, представленной жестким механическим звеном (см. рис.1.2, в).

Допустим, начальная скорость равна нулю: wнач=0, а к ротору двигателя в момент времени t=0 прикладывается электромагнитный момент двигателя, изменяющийся по экспоненциальному закону с постоянной времени Т (рис.1.18):


 

Решим уравнение движения электропривода (1.42) относительно дифференциала скорости:

 

dw=e·dt,                                                     (1.58)

 

где е=(М-Mc)/JS - ускорение масс механической части.

Проинтегрируем обе части полученного равенства при заданном законе изменения движущего момента:

 

В результате получим

 

 

где eнач=(dw/dt)нач=(Мнач-Mc)/JS=DM/JS - начальное ускорение; Мнач =DМ + Мс- начальный момент двигателя.

На рис.1.18 в соответствии с (1.57) и (1.59) построены характеристики M=f(t) и w=f(t).

Скорость нарастает по экспоненциальному закону от нуля до установившегося значения wустначT с ускорением, уменьшающимся по мере возрастания скорости, в связи с уменьшением момента М-Мс, которому ускорение пропорционально, -это переходный процесс пуска электропривода до скорости w=wуст. Время переходного процесса теоретически равно бесконечности, а практически процесс можно считать закончившимся в соответствии со свойством экспоненты через время tпп=(3¸ 4)T.

Рассмотрим условия движения электропривода при постоянных моментах двигателя и сопротивления, т. е. М=const и Мс==const. В результате интегрирования (1.58)


 

получим известную формулу равномерно ускоренного движения:

 

 

С помощью (1.60) при необходимости можно определить время переходного процесса tn n изменения скорости от wнач до wкон:

 

 

 

При М=Мс, e=0 электропривод сохраняет состояние покоя (wнач=0) или равномерного движения (w=wнач=const) до тех пор, пока равенство М=Мс не будет нарушено. На рис.1.19, a показан случай, когда при t=0, М=Мс имеет место состояние покоя (wнач=0). В момент t=0 момент двигателя скачком увеличивается до значения М=М1> Мс и электропривод сразу переходит в режим равномерно ускоренного движения с ускорением е1=(М1с)/JS Если оставить момент двигателя неизменным (М=М1=const), этот режим будет длиться сколь угодно долго, а скорость неограниченно возрастать. На практике при достижении электроприводом требуемой скорости обеспечивается снижение момента двигателя до М=Mc, ускорение скачком уменьшается до нуля и наступает статический установившийся режим при w=wкон, как показано на рис.1.19, а. Следовательно, в данном случае имеет место переходный процесс изменения скорости от wнач до wкон, который обеспечивается соответствующими изменениями момента двигателя.

При прочих равных условиях на изменения скорости электропривода существенное влияние оказывает характер момента сопротивления. Допустим, система нагружена активным моментом Мс, обусловленным, например, весом поднимаемого груза, и работает в установившемся режиме подъема груза с постоянной скоростью при М=Мс. Если в момент времени t=0 уменьшить момент двигателя до нуля, под действием момента Мс привод станет замедляться, при этом

e=-Mc/JS. Скорость в данном случае в соответствии с (1.60) изменяется по закону (рис.1.19, б)

 

 

Через время торможения tT=JS·wначс скорость двигателя становится равной нулю, но активный момент сохраняет свое значение, и в соответствии с (1.62) двигатель начинает ускоряться в противоположном направлении, двигаясь под действием опускающегося груза с возрастающей по абсолютному значению скоростью. Если изменений не произойдет, скорость может возрасти до недопустимых значений, опасных для двигателя и механизма. Поэтому отключение двигателя от сети для механизмов с активной нагрузкой представляет опасность и такие механизмы обязательно снабжаются механическим тормозом, который автоматически затормаживает привод после отключения двигателя от сети.

На рис.1.19, б показан переходный процесс реверса электропривода от wнач до wкон=-wнач под действием активного момента Мс. В момент времени tпп, когда достигается требуемое значение скорости wкон, момент двигателя скачком увеличивается от нуля до М=Мс и наступает статический режим работы с wkoh=const.

На рис.1.19, в представлен процесс реверса электропривода при реактивном моменте Мс от начальной скорости wнач одного направления до конечной скорости wкон противоположного знака. В момент времени t=0 момент двигателя скачком изменяется от М=Мс до М=-M1 и происходит замедление системы по закону

 

 

Время торможения электропривода определяется (1.61):

 

 

При t> tт скорость двигателя под действием момента М=-М1 меняет свой знак, а это вызывает изменение направления реактивной нагрузки Мс на противоположное (-Мс). Как следствие, скачком уменьшается по абсолютному значению ускорение от

Соответственно при пуске в обратном направлении скорость изменяется следующим образом:

 

 

Время пуска до скорости w=-wкон.

 

 


Для перехода к статическому режиму при скорости w=-wкон момент двигателя должен скачком уменьшиться до значения М=-Mc. Характеристики M(t) и w(t), соответствующие такому переходному процессу, представлены на рис.1.19, в.

 

 

Рассмотренные выше простейшие примеры позволяют сделать вывод о том, что при постоянстве статического момента сопротивления закон изменения скорости привода в переходных процессах определяется характером изменения во времени момента двигателя. Так, для получения экспоненциальной кривой скорости w(t) при пуске необходимо обеспечить экспоненциальную зависимость момента от времени (рис.1.18); для получения равномерно ускоренного процесса пуска необходимо формировать прямоугольный закон изменения момента двигателя от времени (рис.1.19, a) и т. п.

Следовательно, формирование требуемых законов движения электропривода обеспечивается формированием соответствующих законов изменения от времени электромагнитного момента двигателя.

Уравнение движения жесткого приведенного механического звена электропривода позволяет в наиболее простой и наглядной форме анализировать условия движения привода. Если известен характер изменения момента двигателя и приведенного момента нагрузки, с помощью (1.42) можно установить качественный характер кривой w(t), не прибегая к решению этого уравнения. На рис.1.20, a в виде примера показаны вентиляторная нагрузка Мс(w) и постоянный момент двигателя М-Мc.ном=const. В соответствии с (1.42) привод будет двигаться с ускорением

 

 

где DMS - суммарный момент потерь на трение в агрегате; Мс.ном- номинальный момент статической нагрузки, соответствующий номинальной скорости вентилятора wвном.

Так как e=dw/dt, то (1.63) при каждом значении скорости определяет тангенс угла наклона касательной к кривой w(t) в данной точке. В соответствии с (1.63) ускорение монотонно убывает от начального значения

 

 

до конечного eкон=0. Такой закономерности качественно соответствует кривая w(t), приведенная на рис.1.20, б. Количественной оценкой может служить ориентировочное значение времени пуска электропривода. Его можно вычислить, заменив кривую Мс(w) постоянным моментом нагрузки, равным среднему значению Мс(w)=Мсср, как показано на рис.1.20, a. При этом удается оценить среднее ускорение

 

 

и далее определить ориентировочное время пуска:

 

 


Если, напротив, имеется экспериментальная осциллограмма w=f(t) для пуска двигателя вентилятора (рис.1.20, б) и известен момент двигателя М=Мс.ном=const, то по осциллограмме при разных значениях w можно определить соответствующие значения ускорения e и с помощью (1.63) вычислить механическую характеристику вентилятора Мс(w), показанную на рис.1.20, а.

В современных условиях, когда инженер может решать задачи любой сложности с помощью вычислительной техники, умение производить подобные оценочные расчеты приобретает особо важное значение. Такие оценки помогают в условиях наладки и эксплуатации оперативно анализировать работу электропривода, а при проектировании и исследовании электроприводов контролировать и правильно понимать физическую суть математических результатов, выдаваемых ЭВМ.


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 155; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь