Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Уравнения, описывающие электрические характеристики БТ в динамическом режиме



 

Рассмотрим эффекты накопления заряда в устройстве на примере модели Э-М. Накопление заряда в БТ моделируется включением трех типов конденсаторов: двух нелинейных конденсаторов, учитывающих барьерные емкости p-n-переходов, двух нелинейных конденсаторов, учитывающих диффузионные емкости переходов, и постоянного конденсатора перехода подложки [1].

Заряд, связанный с подвижными носителями в БТ, моделируется диффузионными емкостями. Этот заряд разделен на две составляющие: один связан с опорным источником коллекторного тока ICC, и другой с опорным источником тока эмиттера IEC. Каждый компонент отображается конденсатором.

Чтобы вычислить диффузионную емкость, связанную с ICC, необходимо рассмотреть общее число подвижных зарядов, связанных с этим током. Поэтому примем, что переход Б-Э прямо смещен и VBC=0.

Для упрощенного одномерного случая постоянно легированной базы, незначительной рекомбинации в базе, и низкого уровня инжекции в БТ (см. рисунок 13), сумма подвижных зарядов QDE, связанная с ICC, может быть записана как сумма отдельных неосновных зарядов:

 

, (45)

 

где QE – заряд неосновных носителей, запасенный в эмиттерной области, QJE – заряд неосновных носителей в обедненной области перехода Э-Б, связанный с ICC (обычно принимают равным нулю), QBF – заряд неосновных носителей, накопленный в нейтральной области базы, QJC- заряд неосновных подвижных носителей в обедненной области перехода К-Б, связанный с ICC.

 

Рисунок 13 – Поперечный разрез n+-p-n- -транзистора, показывающий размещение компонент заряда [1]

 

Чтобы определить диффузионную емкость, необходимо рассмотреть только одну составляющую. Из уравнения (45) полный заряд подвижных носителей, связанный с ICC может также быть выражен как [1]

 

, (46)

 

где tE – время задержки эмиттера; tEB - время пролета через ООЗ перехода Э-Б; tBF - время пролета базы; tCB - время пролета ООЗ перехода Б-К; и tF - общее прямое время пролета (принятое здесь постоянным), которое представляет среднее время для неосновных носителей, необходимое для того чтобы диффундировать через нейтральную область базы из эмиттера к коллектору. tЕB стремится к нулю.

Подобный анализ общего заряда подвижных носителей, связанного с IEC приводит к

 


(47)

 

где QC – заряд неосновных подвижных носителей, накопленный в нейтральной области коллектора; QJC – заряд неосновных носителей в ООЗ перехода К-Б, связанный с IEC; QBR – заряд неосновных носителей, накопленный в нейтральной области базы; QJE - заряд неосновных носителей в ООЗ Э-Б, связанный с IEC. Если заряд QJC принять равным 0, тогда из уравнения (47) следует

 

, (48)

 

где tC – время задержки коллектора, tBR - обратное время пролета Б, и tR - полное обратное время пролета (принят постоянным). tСB стремится к нулю.

Два заряда QDE и QDC моделируются двумя нелинейными конденсаторами

 

 (49)

 

как показано на рисунке 14.

 


Рисунок 14 – Модель Эберса-Молла для большого сигнала

 

С ростом приращений на переходах неподвижные заряды QJE и QJC, накопленные в обедненных областях БТ, могут быть смоделированы двумя конденсаторами – называемыми барьерными емкостями. Эти емкости, обозначенные CJE для перехода Б-Э и CJC для коллекторного перехода, включены в модель, как это показано на рисунке 14. Каждая емкость перехода - нелинейная функция от напряжения на выводах перехода, с которым соединена.

В [1] показано, что обе эти зависимости имеют следующий вид:

 

(50)

 

где CJ(0) – барьерная емкость при нулевом смещении, V – приложенное напряжение, f - контактная разность потенциалов перехода, m – показатель плавности перехода.

Для эмиттерного перехода и коллекторного переходов коэффициенты плавности равны по умолчанию mE = mC = 0, 33.

Чтобы получить неподвижные заряды QJE и QJC, необходимо проинтегрировать барьерные емкости по их напряжению, то есть

 


 (51)

 

На рисунке 15 показаны три кривые зависимости барьерной емкости как функции напряжения [1].

 

кривая (а) соответствует выражению (50)

кривая (b) показывает конечное изменение барьерной емкости

кривая (с) описывается соотношением (52)

Рисунок 15 – График изменения барьерной емкости с напряжением

 

Кривая (с) рисунка 15 представляет прямолинейное приближение, сделанное в соответствии с обычными компьютерными программами для V> f/2. Уравнение для этой прямой линии, полученной для соответствующего наклона в f/2, определяется как

 

 для V ³ f/2(52)

 

В этом приближении удается избежать бесконечной емкости. Но оно не столь точно как кривая Чавла-Гуммеля (b), однако, приемлемо потому, что под прямым смещением диффузионные емкости, доминируют и неотъемлемо включают эффект заряда подвижных носителей в обедненных областях [1].

В Spice используется прямолинейная аппроксимация для CJ подобная линии (с) рисунка 15. Уравнение (52) заменено следующим общим соотношением:

 

 для V ³ 0(53)

 

Помимо CJE и CJC, при проектировании интегральных схем должна быть принята во внимание еще одна емкость: емкость подложки CJS.

Хотя фактически это барьерная емкость в области с изменяющимся потенциалом эпитаксиальный слой – подложка, здесь она смоделирована как конденсатор с постоянным номиналом.

Это представление адекватно для большинства случаев, так как переход ЭС – подложка смещен в обратном направлении в целях изоляции.

Установив основные соотношения эффектов накопления заряда, покажем, как реализована модель Э-М для большого сигнала в Spice. Компоненты накопленных зарядов QBE = QDE + QJE и QBC = QDC + QJC моделируются конденсаторами CBE и CBC, включенными в эквивалентную схему модели так, как показано на рисунке 16.

 

Рисунок 16 – Модель большого сигнала Эберса-Молла в Spice2

 


Компоненты заряда накопления представлены в PSpice следующими зависимыми от напряжения уравнениями емкости [1]:

 

, (54)

, (55)

, (56)

 

где для эмиттерного перехода

 

, (57)

 

для коллекторного перехода

 

, (58)

 

где FC – коэффициент нелинейности барьерных емкостей прямосмещенных переходов, принимающий значения от 0 до 1. Коэффициенты плавности переходов хотя и включены в соотношения (54) – (58), фактически не учитываются в модели Э-М

В PSpice схема модели большого сигнала Г-П идентична схеме, приведенной на рисунке 16. Зависимые от напряжения емкости, определены соотношениями (54) - (58), причем здесь учитываются коэффициенты плавности mE, mC и mS (обычно, они изменяются между 0, 33 и 0, 5), а IEC и ICC рассматриваются как функции ISS и qB. Кроме того, модель большого сигнала Г-П, учитывает три дополнительных эффекта: распределенная емкость перехода Б-К, модуляция времени переноса заряда tF, и распределенные явления в области базы (стадия избытка).


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 160; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.027 с.)
Главная | Случайная страница | Обратная связь