Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Виды физических полей тела человека. Их источники



Введение

 

Вокруг любого тела существуют различные физические поля, определяемые процессами, происходящими внутри его. Не составляет в этом смысле исключения и человек. Физические поля, которые генерирует организм в процессе функционирования, называют собственными физическими полями организма человека. [4]

Многочисленные физические методы исследования организма человека, использующие регистрацию собственных физических полей человека, позволяют получить информацию о процессах в организме, которую нельзя получить иными способами.

Ученых интересуют не сами физические поля биологических объектов, а возможность переноса по этим каналам информации, связанной с работой внутренних органов. Изучение физических полей биообъектов методологически очень близко к пассивному дистанционному зондированию Земли, атмосферы и т.д. В применении таких методов накоплен большой опыт. Нет необходимости объяснять, сколь важную информацию о структуре и функционировании объекта они дают. Из-за нестационарности биообъектов необходимо регистрировать сигналы по многим каналам одновременно, включая электрофизиологический контроль. Для получения пространственной структуры поля в каждом канале необходимо использовать матричные или сканирующие антенны. Аппаратура должна быть достаточно быстродействующей, чтобы успевать регистрировать сигналы в динамике, т.е. быстрее, чем изменяется состояние объекта. Практически во всех каналах необходимо тщательное экранирование от помех.

Задача состоит не в разработке принципиально новой аппаратуры, а в применении современной техники дистанционного зондирования в целях исследования биологических объектов и, главное, в создании методики таких исследований. [1]

Так как биологический объект является сложной приемной системой то встает проблема изучения физических полей. Решение этой проблемы возможно только на основе тесной кооперации физиологов, биофизиков, психологов, медиков, а также специалистов отраслевых организаций, разрабатывающих измерительную аппаратуру.

Проблема систематического исследования физических полей биообъектов была поставлена в Институте радиотехники и электроники РАН Ю.В. Гуляевым и Э.Э. Годиком.


Виды физических полей тела человека. Их источники

 

Вокруг человека существуют электромагнитные и акустические поля (гравитационное поле и элементарные частицы остаются за пределами нашего рассмотрения).

Можно выделить основные 4 диапазона электромагнитного излучения и 3 диапазона акустического излучения, в которых ныне ведутся исследования. [4]

Электромагнитные поля

 

Диапазон собственного электромагнитного излучения ограничен со стороны коротких волн оптическим излучением, более коротковолновое излучение - включая рентгеновское и γ -кванты - не зарегистрировано. Со стороны длинных волн диапазон можно ограничить радиоволнами длиной около 60 см. В порядке возрастания частоты четыре диапазона электромагнитного поля, представленные на рис.12.1, включают в себя:

1) низкочастотное электрическое (Е) и магнитное (В) поле (частоты ниже 103 Гц);

2) радиоволны сверхвысоких частот (СВЧ) (частоты 109 - 1010 Гц и длина волны вне тела 3-60 см);

3) инфракрасное (ИК) излучение (частота 1014 Гц, длина волны 3-10 мкм);

4) оптическое излучение (частота 1015 Гц, длина волны порядка 0, 5 мкм).

Такой выбор диапазонов обусловлен не техническими возможностями современной электроники, а особенностями биологических объектов и оценками информативности различных диапазонов для медицины. Характерные параметры различных электромагнитных полей, создаваемых телом человека, приведены в табл.12.1

Источники электромагнитных полей разные в различных диапазонах частот. Низкочастотные поля создаются главным образом при протекании физиологических процессов, сопровождающихся электрической активностью органов: кишечником (~1 мин), сердцем (характерное время процессов порядка 1 с), мозгом (-0, 1 с), нервными волокнами (-10 мс). Спектр частот, соответствующих этим процессам, ограничен сверху значениями, не превосходящими ~1кГц.

В СВЧ и ИК-диапазонах источником физических полей является тепловое электромагнитное излучение.

Чтобы оценить интенсивность электромагнитного излучения на разных длинах волн, тело человека, как излучатель, можно с достаточной точностью моделировать абсолютно черным телом, которое, как известно, поглощает все падающее на него излучение и поэтому обладает максимальной излучающей способностью.

Излучательная способность тела - количество энергии, испускаемой единицей поверхности тела в единицу времени в единичном интервале длин волн по всем направлениям - зависит от длины волны X и абсолютной температуры тела Т.

ИК-излучение тела человека измеряют тепловизорами в диапазоне 3-10 мкм, где оно максимально.

Акустические поля

 

Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0, 01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц.

В порядке возрастания частоты три диапазона акустического поля включают в себя:

1) низкочастотные колебания (частоты ниже 103 Гц);

2) кохлеарную акустическую эмиссию (КАЭ) - излучение из уха человека (v ~103 Гц);

3) ультразвуковое излучение (v ~ 1-10 МГц).

Источники акустических полей в различных диапазонах частот имеют разную природу. Низкочастотное излучение создается физиологическими процессами: дыхательными движениями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися колебаниями поверхности человеческого тела в диапазоне приблизительно 0, 01 - 103 Гц. Это излучение в виде колебаний поверхности можно зарегистрировать контактными, либо не контактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны практически полностью отражаются обратно от границы разуй раздела " воздух-тело человека" и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близка к плотности воды, которая на три порядка выше плотности воздуха.

У всех наземных позвоночных существует, однако, специальный орган, в котором осуществляется хорошее акустическое согласование между воздухом и жидкой средой, - это ухо. Среднее и внутреннее ухо обеспечивают передачу почти без потерь звуковых волн из воздуха к рецепторным клеткам внутреннего уха. Соответственно, в принципе, возможен и обратный процесс - передача из уха в окружающую среду - и он обнаружен экспериментально с помощью микрофона, вставленного в ушной канал.

Источником акустического изучения мегагерцевого диапазона является тепловое акустическое излучение - полный аналог соответствующего электромагнитного излучения. Оно возникает вследствие хаотического теплового движения атомов и молекул человеческого тела. Интенсивность этих акустических волн, как и электромагнитных, определяется абсолютной температурой тела. [4]

 

Природа биомагнитных полей

 

Магнитные поля живого организма могут быть вызваны тремя причинами. Прежде всего, это ионные токи, возникающие вследствие электрической активности клеточных мембран (главным образом мышечных и нервных клеток). Другой источник магнитных полей - мельчайшие ферромагнитные частицы, попавшие или специально введенные в организм. Эти два источника создают собственные магнитные поля. Кроме того, при наложении внешнего магнитного поля проявляются неоднородности магнитной восприимчивости различных органов, искажающие наложенное внешнее поле.

Магнитное поле в двух последних случаях не сопровождается появлением электрического, поэтому при исследовании поведения магнитных частиц в организме и магнитных свойств различных органов применимы лишь магнитометрические методы. Биотоки же, кроме магнитных полей, создают и распределение электрических потенциалов па поверхности тела. Регистрация этих потенциалов уже давно используется в исследованиях и клинической практике - это электрокардиография, электроэнцефалография и т.п. Казалось бы, что их магнитные аналоги, т.е. магнитокардиография и магнитоэнцефалография, регистрирующие сигналы от тех же электрических процессов в организме, будут давать практически аналогичную информацию об исследуемых органах. Однако, как следует из теории электромагнетизма, строение источника тока в электропроводящей среде (организме) и неоднородность самой это среды существенно по-разному отражаются па распределении магнитных и электрических нолей: (некоторые виды биоэлектрической активности проявляют себя преимущественно в электрическом поле, давая слабый магнитный сигнал, другие - наоборот. Поэтому есть много процессов, наблюдение которых магнитографически предпочтительнее.

Магиитография не требует прямого контакта с объектом, т.е. позволяет проводить измерения через повязку или другую преграду. Это не только практически удобно, по |и составляет принципиальное преимущество перед электрическими методами регистрации данных так как места крепления электродов на коже могут быть источниками медленно меняющихся контактных потенциалов. Подобных паразитных помех нет при магнитографических методах, и потому магнитографня позволяет, в частности, надёжно исследовать медленно протекающие процессы (на сегодняшний день с характерным временем в десятки минут).

Магнитные поля быстро ослабевают при удалении от источника активности, так как являются следствием сравнительно сильных токов в самом работающем органе, в то время как поверхностные потенциалы определяются более слабыми и " размазанными" токами в коже. Поэтому магиитография более удобна для точного определения (локализации) моста биоэлектрической активности.

И, наконец, индукция магнитного поля как вектор характеризуется не только абсолютной величиной, но и направлением, что также может давать дополнительную полезную информацию.

Не следует полагать, что электро- и магнитографические методы конкурируют между собой. Наоборот, именно их комбинация дает наиболее полную информацию об исследуемых процессах. Но для каждого из методов есть области, где применение какого-либо одного из них предпочтительнее. [1]

Магнитокардиография

 

Сердце - наиболее сильный источник электрических и магнитных полей в организме, поэтому магнитокардиография возникла еще до появления сквидов. Но лишь сквид-магпитометры позволили получать магнитокардиограммы (МКГ) столь же высокого качества, как и электрокардиограммы. (ЭКГ). По внешнему виду сигналы МКГ и ЭКГ очень похожи, нарушения же сердечной деятельности несколько по-разному сказываются на результатах электрических и магнитных измерений. В ряде лабораторий мира сейчас идет процесс накопления соответствующих данных, что позволит систематизировать особенности магнитного проявления различных сердечных заболеваний.

Как уже упоминалось, наиболее ярко достоинства магнитографии проявляются при наблюдепии медленно меняющихся и тем более постоянных сигналов. Так, именно магнитографически были обнаружены постоянные " токи повреждения", возникающие при закупорку коронарной артерии (в экспериментах на собаках).

Другой серьезный успех магнитокардиографии - наблюдение МКГ плода в теле матери. Четкая локализация магнитного поля в районе источника позволила отделить сигналы плода от более сильных сигналов материнского сердца, в то время как электрические сигналы в значительной мере смешаны - из-за пространственной размазанности слабых поверхностных токов ЭКГ.

Магиитография позволяет решать и другую важную задачу кардиологии - определение кровотока в сердце. Если наложить небольшое внешнее магнитное поле, то периодический выброс крови сердцем вызовет переменный магнитный сигнал, позволяющий определить объем и скорость движущейся жидкости.

Совсем недавно возникло новое направление в магнитокардиографии, которое сродни рассматриваемым ниже нейромагпитным измерениям, - это МГК высокого разрешения. Суть ее заключается в более " пристальном" изучении тех интервалов сердечного цикла когда мышца спокойна: в это время можно измерить слабые магнитные сигналы, сопровождающие нервные импульсы, распространяющиеся в сердце. Была выявлена интересная особенность эти системы неизменны в течение приблизительно 20 циклов, затем слегка изменяют форму, снова сохраняя ее следующие 5-10 циклов, и т.д. Вероятно, здесь содержится определенная информация о нервных процессах в сердце. [1]

 

Нейромагнитные поля

 

При работе мозга, основы которой пока еще во многом загадочны, возникают как электрические, так и магнитные поля. Наиболее сильные сигналы порождаются спонтанной ритмической активностью мозга. С помощью электроэнцефалографии проведена классификация этих ритмов и установлено соответствие между ними и функциональным состоянием мозга (бодрствованием, разными фазами сна) или патологическими проявлениями (например, эпилептическим припадком).

Исследования показали, что электро- и магнитоэнцефалограммы (ЭЭГ и МЭГ) могут сильно отличаться. В кардиографии же сигналы ЭКГ и МКГ очень похожи. Поэтому применение сквид-магнитометров особенно перспективно при исследовании мозга.

Однако различие в ЭЭГ и МЭГ отнюдь не обязательно. Так, в альфа-ритме, т.е. колебаниях с частотой 8-12 Гц, характерном для бодрствующего человека с закрытыми глазами и спокойном состоянии, магнитные и электрические поля появляются синхронно, т.е. субъект с большим электрическим сигналом альфа-ритма вырабатывает и больший магнитный сигнал. Правда, подобная четкая связь отсутствовала у пациентов с нарушениями ритмической активности.

При сравнении электро- и магнитоэнцефалограмм следует учитывать, что в отличие от других органов мозг практически целиком окружен костной тканью черепа, а ее электропроводность много меньше, чем кожи и самого вещества мозга. Кроме того, естественные отверстия черепа усложняют пути электрического тока, в результате чего картина потенциалов на поверхности головы человека представляет собой сложное наложение пространственных распределений сигналов от довольно удаленных источников внутри мозга. Магнитный же датчик реагирует главным образом па более сильные токи в самой области биоэлектрической активности, что также очень важно, определенным образом ориентированные относительно приемной катушки сквид-магнитометра. Это делает магнитографические методы предпочтительными, поскольку наибольший исследовательский и диагностический интерес представляет изучение сигналов от конкретного источника внутри мозга - без помех, создаваемых другими видами активности. Так, исследования мозга у лиц, страдающих эпилептическими припадками, показали, что магнитографически удается точно обнаружить очаг патологической активности, в то время как на ЭЭГ у отдельных пациентов не регистрировался спектр, характерный для эпилепсии.

Но наиболее ярко преимущества магнитной регистрации проявляются при исследованиях откликов мозга на различные воздействия через органы чувств.

В ряде лабораторий мира проводятся исследования магнитных сигналов, сопровождающих отклики мозга на осязательное, звуковое и зрительное раздражение. Уже первые результаты показали, что эти так называемые вызванные магнитные поля (ВМП) мозга обладают сравнительно простой структурой и по ним можно установить расположение источника биоэлектрической активности в коре головного мозга. Некоторые источники ВМП могут быть достаточно хорошо представлены в виде токового диполя. В ответ на зрительное раздражение возникает токовый диполь в затылочной части головы, на слуховое - в височной части. В ответ на раздражение мизинца правой руки возникает диполь, перпендикулярпый центральной борозде левого полушария. Этот диполь расположен в проекционной зоне чувствительных рецепторов различных частей тела, и именно в том месте, где, как показали нейрохирургические исследования, находится " представительство" мизинца. С помощью магнитографии становится возможным без хирургического вмешательства весьма точно выявить то место в коре мозга, куда приходит и где обрабатывается информация от органов чувств. Столь точно устанавливать положение источника биоэлектрической активности мозга ЭЭГ не позволяет.

Сравнительная простота ряда ВМП дает возможность проводить с ними надежные нейрофизиологические эксперименты. Например, исследовались магнитные поля мозга, вызванные реакцией па решетку из темных и светлых полос, периодически появляющуюся на экране осциллографа. Такой вид стимулирования в исследованиях зрительного восприятия весьма распространен, и его применение связано с современными теоретическими представлениями о восприятии образов. Оказалось, что амплитуда магнитного сигнала в этом случае больше, чем, например, при использовании простой вспышки. Периодически (от восьми до двадцати раз в секунду) предъявляя такую решетку, можно по фазовому отставанию магнитного отклика установить время прохождения сигнала но нервным путям от глаза до определенной области коры головного мозга.

Как установлено, прохождение сигнала - не пассивный процесс.

При этом осуществляется последовательная обработка информации в различных отделах мозга, и по времени этого " активного" запаздывания (т) можно в той или иной мере судить о характере этой обработки.

У большинства испытуемых время запаздывания для обоих полушарий мозга одинаковое, но у некоторых людей разница во времени реакции правого и левого полушарий достигала 0, 1 с! Этот факт, по-видимому, может иметь клиническую ценность, например для ранней диагностики склероза.

Точное измерение положения области нервной активности, сопровождающей раздражение того или иного органа чувств, позволяет строить карты активности коры головного мозга: " соматотопическую" для осязания, " тонотопическую" для слуха, " ретинотопическую" для зрения.

Такие карты могут служить основой для понимания процессов переработки поступающей в головной мозг информации и постановки более сложных нейрофизиологических экспериментов на базе полученных результатов. Причем исследования можно проводить па вполне здоровых людях без какого-либо оперативного вмешательства и существенных неудобств для испытуемого.

Магнитография позволяет исследовать процессы не только в коре больших полушарий, но и в глубоких структурах мозга и не только отклики на возбуждение органов чувств, но и более сложные процессы.

Вполне реально создание набора, скажем, из ста чувствительных элементов, одновременно регистрирующих магнитные поля в разных точках вокруг головы человека. Обработка этих данных на ЭВМ даст картину распределения источников поля по всему объему мозга. Такая система во многом схожа с уже существующими системами компьютерной рентгеновской томографии и ЯМР-интроскопии, из которых первая дает полную картину распределения плотности вещества в мозге на реновации данных о поглощении рентгеновских лучей, а вторая - картину распределения определенных химических веществ, полуденную методом ядерного магнитного резонанса. Магнитные методы обещают в перспективе построение трехмерной картины электрической активности мозга.

Магнитные исследования мозга реально ведутся всего лишь несколько лет, но уже первые результаты показали большую перспективность метода. Биомагнетизм оказался не только важной частью биологической науки, но и обеспечил базу для развития других применений, сверхчувствительной магнитометрии.

Наряду с транзистором и лазером детище квантовой механики сквид лишний раз демонстрирует, насколько практичной стала эта удивительная наука, казавшаяся в прошлом столь абстрактной. [1]

Инфракрасное излучение

 

Наиболее яркую информацию о распределении температур и поверхности тела человека и ее изменениях во времени дает метод динамического инфракрасного тепловидения. В техническом отношении это полный аналог телевидения, только датчик измеряет не оптическое излучение, отраженное от объекта, которое видит человеческий глаз, как в телевидении, а его собственное, не видимое глазом, инфракрасное излучение. Тепловизор состоит из сканера, измеряющего тепловое излучение в диапазоне длин волн от 3 до 10 мкм, устройства для сбора данных и ЭВМ для обработки изображения. Тепловое излучение от разных участков тела последовательно, с помощью колеблющихся зеркал, проецируют на один приемник инфракрасного излучения, охлаждаемый жидким азотом. Тепловизоры передают в 1 секунду 16 кадров. Чувствительность тепловизора при измерении одного кадра - порядка 0, 1 К, однако ее можно резко увеличить, используя ЭВМ для обработки изображений.

 

Акустические поля человека

 

Поверхность человеческого тела непрерывно колеблется. Эти колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.

Низкочастотные механические колебания с частотой ниже нескольких килогерц дают информацию о работе легких, сердца, нервной системы. Регистрировать движения поверхности тела человека можно дистанционными или контактными датчиками в зависимости от решаемой задачи. Например, в фонокардиографии для измерения акустических шумов, создаваемых сердцем, используют микрофоны, устанавливаемые на поверхности тела. Электрические сигналы с датчиков усиливают и подают на регистрирующее устройство либо ЭВМ и по их форме и величине делают заключения о движениях тех или иных участков тела.

Кохлеарная акустическая эмиссия. Из уха животных и человека могут излучаться звуки - это явление называют кохлеарной акустической эмиссией, поскольку их источник локализован в улитке (cochlea) органа слуха. Эти звуки можно зарегистрировать микрофоном, расположенным в ушном канале. Обнаружен ряд видов кохлеарной акустической эмиссии, среди которых выделяется так называемая спонтанная эмиссия и акустическое эхо.

Спонтанная эмиссия - это самопроизвольное непрерывное излучение звука из ушей человека. Уровень звукового давления достигает 20 дБ, т.е. в 10 раз выше порогового значения 2 • 10 5 Па, которое способно воспринимать ухо человека на частоте 1 кГц. Частоты эмиссии у разных лиц отличаются и лежат в диапазоне 0, 5-5 кГц, излучение обладает высокой монохроматичностью. Эмиссия наблюдается в среднем у 25% мужчин и у 50% женщин. Спонтанная эмиссия не имеет никакого отношения к " звону в ушах" - субъективному ощущению чисто нервного происхождения.

Кохлеарная акустическая эмиссия связана с деятельностью так называемых наружных волосковых клеток, расположенных в кортиевом органе улитки. В ответ на приходящую звуковую волну они изменяют свои размеры и вызывают во внутреннем ухе механические колебания, которые способны, распространяясь в обратном направлении, выходить наружу через среднее ухо. Биофизический механизм быстрых изменений геометрии клеток пока неясен, его быстродействие в сто раз выше, чем у мышц.

Из всех видов кохлеарной акустической эмиссии применение в медицине пока что нашло явление акустического эха - излучения звуков из уха спустя некоторое время после подачи в ухо короткого звукового сигнала. Оно используется для диагностики слуха новорожденных в первые несколько дней жизни, когда невозможно использовать обычные методы аудиометрии. Отсутствие эха является тревожным симптомом не только глухоты, но и зачастую сопряженных с ней поражений других отделов центральной нервной системы. Ранняя диагностика позволяет уже с первых дней жизни принять активные меры и в значительной степени ослабить неблагоприятные последствия этого недуга.

Акустическое излучение ультразвукового диапазона. Тело человека является источником теплового акустического излучения с различными частотами. Обычно акустические волны подходят из глубины тела, отражаются от его поверхности и уходят обратно, однако пьезодатчик, контактирующий с телом, может их зарегистрировать. Особенность акустических волн, распространяющихся в теле человека, в том, что, чем выше частота, тем они сильнее затухают. Поэтому из глубины человеческого тела с расстояний 1 - 10 см могут дойти только тепловые ультразвуковые волны мегагерцевого диапазона с частотами не выше 0, 5 - 10 МГц. Интенсивность этих волн пропорциональна абсолютной температуре тела. Для измерения интенсивности теплового акустического излучения используют прибор - акустотермометр. С помощью этого прибора можно, например, измерить температуру тела человека, погруженного в воду.

Существенной областью применения акустотермографии станет измерение глубинной температуры в онкологии, при процедурах, связанных с нагревом опухолей в глубине тела с помощью разных методов: ультравысокими и сверхвысокими частотами, ультразвуком, лазерным излучением. Акустотермография - потенциально единственный неинвазивный метод, способный обеспечить высокое пространственное разрешение за приемлемое время измерения порядка одной минуты. [4]


Заключение

 

Физические поля человека в настоящее время один из разделов медицинской и биологической физики. Наиболее важное его приложение - это исследование состояния различных органов человека с помощью пассивной регистрации электромагнитного или акустического излучения непосредственно этого органа либо каких-либо других участков тела, связанных с исследуемым органом нервными или гуморальными связями.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. При помощи, которых можно выявить патологии сердца и головного мозга.

И магнитокардиограммы (МКГ) столь же высокого качества, как и электрокардиограммы. Магнитография позволяет исследовать процессы не только в коре больших полушарий, но и в глубоких структурах мозга и не только отклики на возбуждение органов чувств, но и более сложные процессы. При помощи изменения магнитных полей можно судить о физиологическом состояниях мышц, внутренних органов, кожи, глаза.

СВЧ-радиометрия в настоящее время может производить диагностика злокачественных опухолей различных органов: молочной железы, мозга, легких, метастазов, а также функционального состояния коры головного мозга.

ИК-тепловидение это способ оценить кожный кровоток в различных участках тела. Регистрируя размер областей со сниженной температурой, можно определить степень выраженности заболевания, а также эффективность терапевтических мероприятий. При помощи ИК-тепловидения контролируют развитие болезни Рейно.

Оптическое свечение не связано с наличием загрязнений на коже и зависит от функционального состояния пациента, снижаясь в покое и повышаясь с ростом его активности.

Акустические колебания несут информацию о многих процессах внутри организма: дыхательных движениях, биениях сердца и температуре внутренних органов.

Низкочастотные механические колебания применяютсядля измерения акустических шумов, создаваемых сердцем.

Явление акустического эха используется для диагностики слуха новорожденных в первые несколько дней жизни, когда невозможно использовать обычные методы аудиометрии.

С помощью прибора акустотермометра можно, например, измерить температуру тела человека, погруженного в воду. Существенной областью применения акустотермографии станет измерение глубинной температуры в онкологии, при процедурах, связанных с нагревом опухолей в глубине тела с помощью разных методов: ультравысокими и сверхвысокими частотами, ультразвуком, лазерным излучением.

Таким образом, подводя итог можно сказать, что изучение изменения физических полей человека является очень важным для диагностики многих заболеваний.


Список литературы

 

1. Годик Э.Э., Гуляев Ю.В. Физические поля человека и животных // В мире науки. - 1990. - №5. - С.75-83.

2. Гуляев Ю.В., Годик Э.Э., Петров А.В., Тараторин А.М. О возможностях дистантной функциональной диагностики биологических объектов по их собственному инфракрасному излучению // Докл. АН СССР. - 1984. - Т.277, - №6. - С.1486-1491

3. Мирошников М.М. Теоретические основы оптико-электронных приборов, 1983г.

4. Антонов В.Ф., Черныш А.М., Вознесенский С.А., Козлова Е.К., 2000г.

Введение

 

Вокруг любого тела существуют различные физические поля, определяемые процессами, происходящими внутри его. Не составляет в этом смысле исключения и человек. Физические поля, которые генерирует организм в процессе функционирования, называют собственными физическими полями организма человека. [4]

Многочисленные физические методы исследования организма человека, использующие регистрацию собственных физических полей человека, позволяют получить информацию о процессах в организме, которую нельзя получить иными способами.

Ученых интересуют не сами физические поля биологических объектов, а возможность переноса по этим каналам информации, связанной с работой внутренних органов. Изучение физических полей биообъектов методологически очень близко к пассивному дистанционному зондированию Земли, атмосферы и т.д. В применении таких методов накоплен большой опыт. Нет необходимости объяснять, сколь важную информацию о структуре и функционировании объекта они дают. Из-за нестационарности биообъектов необходимо регистрировать сигналы по многим каналам одновременно, включая электрофизиологический контроль. Для получения пространственной структуры поля в каждом канале необходимо использовать матричные или сканирующие антенны. Аппаратура должна быть достаточно быстродействующей, чтобы успевать регистрировать сигналы в динамике, т.е. быстрее, чем изменяется состояние объекта. Практически во всех каналах необходимо тщательное экранирование от помех.

Задача состоит не в разработке принципиально новой аппаратуры, а в применении современной техники дистанционного зондирования в целях исследования биологических объектов и, главное, в создании методики таких исследований. [1]

Так как биологический объект является сложной приемной системой то встает проблема изучения физических полей. Решение этой проблемы возможно только на основе тесной кооперации физиологов, биофизиков, психологов, медиков, а также специалистов отраслевых организаций, разрабатывающих измерительную аппаратуру.

Проблема систематического исследования физических полей биообъектов была поставлена в Институте радиотехники и электроники РАН Ю.В. Гуляевым и Э.Э. Годиком.


Виды физических полей тела человека. Их источники

 

Вокруг человека существуют электромагнитные и акустические поля (гравитационное поле и элементарные частицы остаются за пределами нашего рассмотрения).

Можно выделить основные 4 диапазона электромагнитного излучения и 3 диапазона акустического излучения, в которых ныне ведутся исследования. [4]

Электромагнитные поля

 

Диапазон собственного электромагнитного излучения ограничен со стороны коротких волн оптическим излучением, более коротковолновое излучение - включая рентгеновское и γ -кванты - не зарегистрировано. Со стороны длинных волн диапазон можно ограничить радиоволнами длиной около 60 см. В порядке возрастания частоты четыре диапазона электромагнитного поля, представленные на рис.12.1, включают в себя:

1) низкочастотное электрическое (Е) и магнитное (В) поле (частоты ниже 103 Гц);

2) радиоволны сверхвысоких частот (СВЧ) (частоты 109 - 1010 Гц и длина волны вне тела 3-60 см);

3) инфракрасное (ИК) излучение (частота 1014 Гц, длина волны 3-10 мкм);

4) оптическое излучение (частота 1015 Гц, длина волны порядка 0, 5 мкм).

Такой выбор диапазонов обусловлен не техническими возможностями современной электроники, а особенностями биологических объектов и оценками информативности различных диапазонов для медицины. Характерные параметры различных электромагнитных полей, создаваемых телом человека, приведены в табл.12.1

Источники электромагнитных полей разные в различных диапазонах частот. Низкочастотные поля создаются главным образом при протекании физиологических процессов, сопровождающихся электрической активностью органов: кишечником (~1 мин), сердцем (характерное время процессов порядка 1 с), мозгом (-0, 1 с), нервными волокнами (-10 мс). Спектр частот, соответствующих этим процессам, ограничен сверху значениями, не превосходящими ~1кГц.

В СВЧ и ИК-диапазонах источником физических полей является тепловое электромагнитное излучение.

Чтобы оценить интенсивность электромагнитного излучения на разных длинах волн, тело человека, как излучатель, можно с достаточной точностью моделировать абсолютно черным телом, которое, как известно, поглощает все падающее на него излучение и поэтому обладает максимальной излучающей способностью.

Излучательная способность тела - количество энергии, испускаемой единицей поверхности тела в единицу времени в единичном интервале длин волн по всем направлениям - зависит от длины волны X и абсолютной температуры тела Т.

ИК-излучение тела человека измеряют тепловизорами в диапазоне 3-10 мкм, где оно максимально.

Акустические поля

 

Диапазон собственного акустического излучения ограничен со стороны длинных волн механическими колебаниями поверхности тела человека (0, 01 Гц), со стороны коротких волн ультразвуковым излучением, в частности, от тела человека регистрировали сигналы с частотой порядка 10 МГц.

В порядке возрастания частоты три диапазона акустического поля включают в себя:

1) низкочастотные колебания (частоты ниже 103 Гц);

2) кохлеарную акустическую эмиссию (КАЭ) - излучение из уха человека (v ~103 Гц);

3) ультразвуковое излучение (v ~ 1-10 МГц).

Источники акустических полей в различных диапазонах частот имеют разную природу. Низкочастотное излучение создается физиологическими процессами: дыхательными движениями, биением сердца, током крови в кровеносных сосудах и некоторыми другими процессами, сопровождающимися колебаниями поверхности человеческого тела в диапазоне приблизительно 0, 01 - 103 Гц. Это излучение в виде колебаний поверхности можно зарегистрировать контактными, либо не контактными методами, однако его практически невозможно измерить дистанционно с помощью микрофонов. Это связано с тем, что идущие из глубины тела акустические волны практически полностью отражаются обратно от границы разуй раздела " воздух-тело человека" и не выходят наружу в воздух из тела человека. Коэффициент отражения звуковых волн близок к единице из-за того, что плотность тканей тела человека близка к плотности воды, которая на три порядка выше плотности воздуха.

У всех наземных позвоночных существует, однако, специальный орган, в котором осуществляется хорошее акустическое согласование между воздухом и жидкой средой, - это ухо. Среднее и внутреннее ухо обеспечивают передачу почти без потерь звуковых волн из воздуха к рецепторным клеткам внутреннего уха. Соответственно, в принципе, возможен и обратный процесс - передача из уха в окружающую среду - и он обнаружен экспериментально с помощью микрофона, вставленного в ушной канал.


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 1161; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.077 с.)
Главная | Случайная страница | Обратная связь