Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Низкочастотные электрические и магнитные поля



 

Электрическое поле.

Электрическое поле человека существует на поверхности тела и снаружи, вне его.

Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов - они стекают с высокоомной поверхности кожи с характерными временами ~ 100 - 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом. Отметим, что этот сигнал ни много раз меньше, чем поле трибозарядов. [1]

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.

При этом на тело пациента подается переменное электрическое напряжение частотой - 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла. В норме она должна быть симметрична относительно грудины. Ее симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии. Основной прогресс в этих исследованиях обусловлен применением вычислительной техники, в том числе персональных компьютеров. Эта техника позволяет, например, получать так называемые электрокардиограммы высокого разрешении (ЭКГ ВР).

Как известно, амплитуда сигнала ЭКГ не более 1 мВ, а ST-сегмента еще меньше, причем сигнал маскируется электрическим шумом, связанным с нерегулярной мышечной активностью. Поэтому применяют метод накопления - то есть суммирование многих последовательно идущих сигналов ЭКГ. Для этого ЭВМ сдвигает каждый последующий сигнал так, чтобы его R-пик был совмещен с R-пиком предыдущего сигнала, и прибавляет его к предыдущему, и так для многих сигналов в течение нескольких минут. При этой процедуре полезный повторяющийся сигнал увеличивается, а нерегулярные по мехи гасят друг друга. За счет подавления шума удается выделить тонкую структуру ST-комплекса, которая важна для прогноза риска мгновенной смерти.

В электроэнцефалографии, используемой для целей нейрохирургии, персональные компьютеры позволяют строить в реальном времени мгновенные карты распределения электрического поля мозга с использованием потенциалов от 16 до

32 электродов, размещенных на обоих полушариях, через временные интервалы порядка нескольких мс.

Построение каждой карты включает в себя четыре процедуры:

1) измерение электрического потенциала во всех точках, где стоят электроды;

2) интерполяцию (продолжения) измеренных значений на точки, лежащие между электродами;

3) сглаживание получившейся карты;

4) раскрашивание карты в цвета, соответствующие определенным значениям потенциала. Получаются эффектные цветные изображения. Такое представление в квазицвете, когда всему диапазону значений поля от минимального до максимального ставят в соответствие набор цветов, например от фиолетового до красного, сейчас очень распространено, поскольку сильно облегчает врачу анализ сложных пространственных распределений. В результате получается последовательность карт, из которой видно, как по поверхности коры перемещаются источники электрического потенциала.

Персональный компьютер позволяет строить карты не только мгновенного распределения потенциала, но и более тонких параметров ЭЭГ, которые давно апробированы в клинической практике. К ним в первую очередь относится пространственное распределение электрической мощности тех или иных спектральных составляющих ЭЭГ (α, ß, γ , δ, и θ -ритмы). Для построения такой карты в определенном временном окне измеряют потенциалы в 32 точках скальпа, затем по этим записям определяют частотные спектры и строится пространственное распределение отдельных спектральных компонент.

Карты α, δ, ß ритмов сильно отличаются. Нарушения симметрии таких карт между правым и левым полушарием может быть диагностическим критерием в случае опухолей мозга и при некоторых других заболеваниях.

Таким образом, в настоящее время разработаны бесконтактные методы регистрации электрического поля, которое создает тело человека в окружающем пространстве, и найдены некоторые приложения этих методов в медицине. Контактные измерения электрического поля получили новый импульс в связи с развитием персональных ЭВМ - их высокое быстродействие позволило получать карты электрических полей мозга.

Магнитное поле.

Магнитное поле тела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало - 10 млн. - 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемы и с катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо ох ладить до температуры, при которой появляется сверхпроводимость, т.е. до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия - криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека.

В последние годы после открытия " высокотемпературной сверхпроводимости" появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К). Их чувствительность достаточна для измерения магнитных полей сердца.

Магнитное поле, создаваемое организмом человека, на много порядков меньше, чем магнитном поле Земли, его флуктуации (геомагнитный шум) или поля технических устройств.

Существуют два подхода к устранению влияния шумов. Наиболее радикальный - создание сравнительно большого объема (комнаты), в котором магнитные шумы резко уменьшены с помощью магнитных экранов. Для наиболее тонких биомагнитных исследований (на мозге) шумы необходимо с шикать примерно в миллион раз, что может быть обеспечено многослойными стопками из магнитомягкого ферромагнитного сплава (например, пермаллоя). Экранированная комната - дорогостоящее сооружение, и лишь крупнейшие научные центры могут позволить себе се сооружение. Количество таких комнат в мире в настоящее время исчисляется единицами.

Есть и другой, более доступный способ ослабить влияние внешних шумов. Он основан на том, что в большинстве своем магнитные шумы в окружающем нас пространстве порождаются хаотическими колебаниями (флуктуациями) земного магнитного поля и промышленными электроустановками. Вдали от резких магнитных аномалий и электрических машин магнитное поле хотя и флуктуирует со временем, но пространственно однородно, слабо меняясь на расстояниях, сравнимых с размерами человеческого тела. Собственно же биомагнитные поля быстро ослабевают при удалении от живого организма. Это означает, что внешние поля, хотя и намного более сильные, имеют меньшие градиенты (т.е. скорость изменения с удалением от объекта), чем биомагнитные поля.

Приемное устройство прибора со сквидом в качестве чувствительного элемента изготовляется так, что оно чувствительно только к градиенту магнитного поля, - в этом случае прибор называют градиометром. Однако часто внешние (шумовые) поля обладают все же заметными градиентами, тогда приходится применять прибор, измеряющий вторую пространственную производную индукции магнитного поля - градиометр второго порядка. Такой прибор можно применять уже в обычной лабораторной обстановке. Но все же и градиометры предпочтительно применять в местах с " магнитно-спокойной" обстановкой, и некоторые исследовательские группы работают в специально сооружаемых немагнитных домах в сельской местности.

В настоящее время интенсивные биомагнитные исследования ведутся как в магнитоэкранированных комнатах, так и без них, с применением градиометров. В широком спектре биомагнитных явлений есть много задач, допускающих разный уровень ослабления внешних шумов. [4]


Природа биомагнитных полей

 

Магнитные поля живого организма могут быть вызваны тремя причинами. Прежде всего, это ионные токи, возникающие вследствие электрической активности клеточных мембран (главным образом мышечных и нервных клеток). Другой источник магнитных полей - мельчайшие ферромагнитные частицы, попавшие или специально введенные в организм. Эти два источника создают собственные магнитные поля. Кроме того, при наложении внешнего магнитного поля проявляются неоднородности магнитной восприимчивости различных органов, искажающие наложенное внешнее поле.

Магнитное поле в двух последних случаях не сопровождается появлением электрического, поэтому при исследовании поведения магнитных частиц в организме и магнитных свойств различных органов применимы лишь магнитометрические методы. Биотоки же, кроме магнитных полей, создают и распределение электрических потенциалов па поверхности тела. Регистрация этих потенциалов уже давно используется в исследованиях и клинической практике - это электрокардиография, электроэнцефалография и т.п. Казалось бы, что их магнитные аналоги, т.е. магнитокардиография и магнитоэнцефалография, регистрирующие сигналы от тех же электрических процессов в организме, будут давать практически аналогичную информацию об исследуемых органах. Однако, как следует из теории электромагнетизма, строение источника тока в электропроводящей среде (организме) и неоднородность самой это среды существенно по-разному отражаются па распределении магнитных и электрических нолей: (некоторые виды биоэлектрической активности проявляют себя преимущественно в электрическом поле, давая слабый магнитный сигнал, другие - наоборот. Поэтому есть много процессов, наблюдение которых магнитографически предпочтительнее.

Магиитография не требует прямого контакта с объектом, т.е. позволяет проводить измерения через повязку или другую преграду. Это не только практически удобно, по |и составляет принципиальное преимущество перед электрическими методами регистрации данных так как места крепления электродов на коже могут быть источниками медленно меняющихся контактных потенциалов. Подобных паразитных помех нет при магнитографических методах, и потому магнитографня позволяет, в частности, надёжно исследовать медленно протекающие процессы (на сегодняшний день с характерным временем в десятки минут).

Магнитные поля быстро ослабевают при удалении от источника активности, так как являются следствием сравнительно сильных токов в самом работающем органе, в то время как поверхностные потенциалы определяются более слабыми и " размазанными" токами в коже. Поэтому магиитография более удобна для точного определения (локализации) моста биоэлектрической активности.

И, наконец, индукция магнитного поля как вектор характеризуется не только абсолютной величиной, но и направлением, что также может давать дополнительную полезную информацию.

Не следует полагать, что электро- и магнитографические методы конкурируют между собой. Наоборот, именно их комбинация дает наиболее полную информацию об исследуемых процессах. Но для каждого из методов есть области, где применение какого-либо одного из них предпочтительнее. [1]

Магнитокардиография

 

Сердце - наиболее сильный источник электрических и магнитных полей в организме, поэтому магнитокардиография возникла еще до появления сквидов. Но лишь сквид-магпитометры позволили получать магнитокардиограммы (МКГ) столь же высокого качества, как и электрокардиограммы. (ЭКГ). По внешнему виду сигналы МКГ и ЭКГ очень похожи, нарушения же сердечной деятельности несколько по-разному сказываются на результатах электрических и магнитных измерений. В ряде лабораторий мира сейчас идет процесс накопления соответствующих данных, что позволит систематизировать особенности магнитного проявления различных сердечных заболеваний.

Как уже упоминалось, наиболее ярко достоинства магнитографии проявляются при наблюдепии медленно меняющихся и тем более постоянных сигналов. Так, именно магнитографически были обнаружены постоянные " токи повреждения", возникающие при закупорку коронарной артерии (в экспериментах на собаках).

Другой серьезный успех магнитокардиографии - наблюдение МКГ плода в теле матери. Четкая локализация магнитного поля в районе источника позволила отделить сигналы плода от более сильных сигналов материнского сердца, в то время как электрические сигналы в значительной мере смешаны - из-за пространственной размазанности слабых поверхностных токов ЭКГ.

Магиитография позволяет решать и другую важную задачу кардиологии - определение кровотока в сердце. Если наложить небольшое внешнее магнитное поле, то периодический выброс крови сердцем вызовет переменный магнитный сигнал, позволяющий определить объем и скорость движущейся жидкости.

Совсем недавно возникло новое направление в магнитокардиографии, которое сродни рассматриваемым ниже нейромагпитным измерениям, - это МГК высокого разрешения. Суть ее заключается в более " пристальном" изучении тех интервалов сердечного цикла когда мышца спокойна: в это время можно измерить слабые магнитные сигналы, сопровождающие нервные импульсы, распространяющиеся в сердце. Была выявлена интересная особенность эти системы неизменны в течение приблизительно 20 циклов, затем слегка изменяют форму, снова сохраняя ее следующие 5-10 циклов, и т.д. Вероятно, здесь содержится определенная информация о нервных процессах в сердце. [1]

 


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 360; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь