Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Интеграция теоретических и эмпирических знаний как общность научного и учебного познания



К.П. Корневым и Н.Н. Шушариной реализован подход, при котором в процессе подготовки к выполнению лабораторной работы, кроме изучения теоретического материала и методики выполнения работы, обучаемый решает, несколько специально подобранных задач. Задачи имеют исследовательский характер и подобраны таким образом, чтобы подвести студента к решению экспериментальной задачи, которая рассматривается в данной лабораторной работе. В основу построения такой методики авторами положены идеи:

· системность и непрерывность в формировании исследовательских умений на протяжении всего обучения в вузе;

· представленность методологии экспериментальной деятельности на занятиях всех видов и координация их содержания по ее освоению;

· задачное построение теоретического обоснования и детализации методики эксперимента;

· активный характер познавательной деятельности студентов по овладению экспериментальными навыками;

· целостный и завершенный характер познавательной деятельности студентов, отвечающий содержанию и структуре реального научного исследования.

Авторы отмечают, что такая методика проведения практикума позволяет сократить существующий разрыв между решением задач и лабораторным практикумом, а также формирует исследовательские навыки у студентов уже на ранней стадии обучения, на этапе изучения курсов общей физики.

Перед выполнением лабораторных работ студенту предлагается решить три задачи:

· первая задача, с относительно стандартным условием, в ней вводится понятие объекта, его свойства, то есть модель, которая в дальнейшем используется в лабораторной работе;

· вторая задача более высокого уровня сложности, она занимает промежуточное место между тренировочными и творческими задачами;

· третья задача, самая сложная, творческого характера. Ее решение плавно переходит в экспериментальное исследование, проводимое в рамках лабораторной работы.

Таким образом, студент переходит от моделирования физических процессов, которое осуществляется при решении задач, к экспериментальному исследованию, в котором на практике проверяется справедливость модельных представлений, выявляется связь физических величин, параметров, явлений [19].

Несомненно, предложенная методика проведения лабораторного практикума интересна и заслуживает внимания. Однако на решение теоретических задач во время лабораторных занятий затрачивается время, отведенное для экспериментальной деятельности. В силу ряда причин количество часов, выделенное для экспериментальной деятельности по физике недостаточно, поэтому на наш взгляд нецелесообразно использовать время, отведенное для экспериментальной работы, на решение задач. Можно предложить студентам самостоятельно во внеурочное время, решить эти задачи и проверить решение при допуске к выполнению лабораторной работы. В случае если студент не решил одну или несколько задач, воспользоваться для помощи поиска решения временем, планируемым для самостоятельной контролируемой работы (СКР) или изыскать другие резервы времени. Положительный момент предложенной методики состоит в том, что авторы отказались от репродуктивного метода проведения лабораторных работ, а предложили деятельностную методику, которая при некоторой доработке позволит формировать исследовательские умения.

В.С. Звонов, А.С. Поляков, В.Н. Скребов, А.И. Трубилко в основу построения методики проведения лабораторного практикума положили принцип совмещения лабораторной работы и практического занятия. Эти совмещенные занятия проводятся после прочтения полного цикла лекций по соответствующему разделу программы. Длительность такого занятия составляет шесть академических часов, т. е. весь учебный день. Поэтому на лабораторно-практических занятиях возможна организация самостоятельной работы студентов, в которой отсутствует временной разрыв между выдачей, выполнением задания и его контролем, индивидуализируется работа обучаемых, происходит смена информационного обучения студентов деятельным обучением [16, с.68].

Во многих ВУЗах страны остается нерешенной проблема несогласованности по времени проведения лекционных, практических и лабораторных занятий. Теория, необходимая студентам для выполнения лабораторной работы или решения задач в начале семестра, дается на лекции в конце семестра и наоборот.

В.В. Светозаровым, Ю.В. Светозаровым [32, с.30] отмечено, что «сегодня практически во всех ВУЗах изучение теории, решение задач и экспериментальные работы в лаборатории оторваны друг от друга, как во времени, так и в пространстве. Лабораторный практикум по физике оторван от изучения курса еще и по тематической последовательности. Выполняя в начале семестра работу по теме конца семестра, студент тратит время на нажимание кнопок, и плохо понимает содеянное. В результате роль практикума в изучении физики ничтожна, остается лишь получение некоторых экспериментальных навыков».

Авторами была предложена интересная методика проведения лабораторного практикума – «обучение через действие». В ней организационной формой обучения является комплексное занятие, совмещающее в едином цикле изучение теории с лабораторным практикумом. Предложив новую методику В.В. Светозаров, Ю.В. Светозаров, пытались решить следующие проблемы:

1. разрыв между теорией, решением задач и экспериментальной работой как во времени, так и в пространстве;

2. тенденцию сокращения учебного времени, выделяемого на изучение фундаментальных дисциплин. Считая эту тенденцию объективной, авторы предлагают оптимизировать время, затрачиваемое на образование. «В этом отношении физический практикум имеет большие неиспользуемые резервы. Во-первых, это резерв времени: перенос изучения даже части нового материала в практикум снимет дефицит учебного времени. Во-вторых, это резерв качества обучения».

Проведение предложенного практикума возможно благодаря модульным лабораторным комплексам – настольным микролабораториям. Лабораторный комплекс формирует полностью оснащенное рабочее место для одного или двоих студентов и позволяет реализовать десятки опытов различной сложности по нужному разделу курса с быстрым доступом к любому опыту. Для проведения комплексных занятий авторами было предложено использовать часы семинарских и лабораторных занятий. Лекции по физике проводятся обычным порядком. На совмещенном занятии теоретический раздел проводится в режиме повторения, закрепления и углубления знаний. Эксперимент включается в занятие для выдвижения гипотезы, наблюдения физического явления, подтверждения закона и проводится вперемешку с изучением теории и решением теоретических задач.

Для получения зачета студент должен отчитаться за 10 экспериментов, затем выполнить дополнительный «зачетный» эксперимент. Задания для зачетного эксперимента имеют различные уровни сложности и даются с учетом творческих возможностей конкретного студента. Так, задание первого уровня требует выбора метода исследования, второго - выполнения процедуры, описанной в методическом пособии, третьего – проверку теоретических знаний по данному разделу, четвертого – выполнение эксперимента, содержащего элементы научного исследования.

В новой форме занятий оказалось выражено следующее:

· мгновенно возникающая постоянно нараставшая атмосфера сотрудничества преподавателя и студента;

· увлеченность студентов;

· большая нагрузка на преподавателя, связанная с необходимостью органично сочетать разные формы занятий и динамично реагировать на развитие ситуации;

· необходимость основательной подготовки преподавателя к занятию с многовариантным планированием занятия;

· необходимость издания методических пособий иного вида, чем принято для традиционных форм занятий;

· целесообразность сочетания фронтальных экспериментов с индивидуальными заданиями повышенной сложности и самостоятельности (например, по завершению каждой темы).

Темп проведения экспериментов в 2 – 4 раза превышал темп обычного лабораторного занятия.

Авторами отмечены недостатки: слабый контроль подготовки к занятию, запаздывание методического обеспечения, дефицит посадочных мест, необходимость коллективной работы на одной установке (более активный студент подавляет инициативу товарищей). [22]. Несомненно, такая методика решает поставленные проблемы. Однако, как показывает наш опыт, «живой» эксперимент, когда студенты собирают установки своими руками, более успешно решает задачи формирования исследовательских навыков.

«На состоявшейся в г. Челябинске IV учебно-методической конференции стран Содружества «Современный физический практикум» (октябрь, 1997г.) было отмечено, что многие кафедры физики начинают реструктуризацию временной последовательности в изучении курса физики. Объективной предпосылкой тенденции является то обстоятельство, что физика – наука экспериментальная. Следовательно, во главу угла физического образовательного процесса должен быть поставлен учебный физический эксперимент. Реконструкция временной последовательности физического образования в ВУЗах должна пройти в два этапа. На первом этапе временная последовательность должна начинаться с серьезной лекционной демонстрации, или лекционного физического эксперимента, если позволяют технические возможности и завершиться практикой (семинаром), лабораторной работой. На втором этапе возможно начинать изучение курса физики с лабораторного практикума, результаты которого получают теоретическое обоснование на лекции и закрепляются изучением расчетных методов на практических занятиях [11].

На наш взгляд, сочетание лабораторных работ и экспериментальных творческих заданий при проведении практикума способствует выявлению индивидуальных способностей студентов, вовлечению большинства из них в исследовательскую деятельность и подготовке к дальнейшей научно-исследовательской работе.

 


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 196; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь