Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Тема: Производная в курсе алгебры средней школыСтр 1 из 2Следующая ⇒
Курсовая работа Тема: Производная в курсе алгебры средней школы
Южно-Сахалинск 2002г В первой главе курсовой работы речь пойдет о понятии производной, ее истории и областях ее применения. Во второй главе будет детально рассмотрен курс изучения производной трех учебников по алгебре и началам анализа для 10-11кл.: Алимова, Башмакова и под редакцией Колмогорова. Цель курсовой работы – раскрыть понятие производной, рассмотреть систему ее изучения в учебниках средней школы, охарактеризовать особенности изложения материала и дать рекомендации по поводу использования этих учебников.
Производная и ее применение
Понятие производной
Исторические сведения
Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач: 1) о разыскании касательной к произвольной линии 2) о разыскании скорости при произвольном законе движения Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда. В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.
Понятие производной
Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х0 - произвольная точка этого промежутка Дадим аргументу x приращение ∆ x, тогда функция y = f(x) получит приращение ∆ y = f(x + ∆ x) - f(x). Предел, к которому стремится отношение ∆ y / ∆ x при ∆ x → 0, называется производной от функции f(x). y'(x)=
1-3. Правила дифференцирования и таблица производных
Геометрический смысл производной Касательная к кривой
Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.
Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При некотором значении x функция имеет значение y = f(x). Этим значениям на кривой соответствует точка M(x0, y0). Введем новый аргумент x0 + ∆ x, его значению соответствует значение функции y0 + ∆ y = f(x0 + ∆ x). Соответствующая точка - N(x0 + ∆ x, y0 + ∆ y). Проведем секущую MN и обозначим φ угол, образованный секущей с положительным направлением оси Ox. Из рисунка видно, что ∆ y / ∆ x = tg φ. Если теперь ∆ x будет приближаться к 0, то точка N будет перемещаться вдоль кривой, секущая MN - поворачиваться вокруг точки M, а угол φ - меняться. Если при ∆ x → 0 угол φ стремится к некоторому α, то прямая, проходящая через M и составляющая с положительным направлением оси абсцисс угол α, будет искомой касательной. При этом, ее угловой коэффициент: То есть, значение производной f '(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).
Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.
Использование производной в физике Скорость материальной точки
Пусть зависимость пути s от времени t в данном прямолинейном движении материальной точки выражается уравнением s = f(t) и t0 -некоторый момент времени. Рассмотрим другой момент времени t, обозначим ∆ t = t - t0 и вычислим приращение пути: ∆ s = f(t0 + ∆ t) - f(t0). Отношение ∆ s / ∆ t называют средней скоростью движения за время ∆ t, протекшее от исходного момента t0. Скоростью называют предел этого отношения при ∆ t → 0.
Среднее ускорение неравномерного движения в интервале (t; t + ∆ t) - это величина < a> =∆ v / ∆ t. Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения: То есть первая производная по времени (v'(t)).
Пример: Зависимость пройденного телом пути от времени задается уравнением s = A + Bt + Ct2 +Dt3 (C = 0, 1 м/с, D = 0, 03 м/с2). Определить время после начала движения, через которое ускорение тела будет равно 2 м/с2.
Решение: v(t) = s'(t) = B + 2Ct + 3Dt2; a(t) = v'(t) = 2C + 6Dt = 0, 2 + 0, 18t = 2; 1, 8 = 0, 18t; t = 10 c
Мощность Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности: .
Исследование функций
Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции. По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума: 1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x0. Если производная f '(x) при переходе через точку x0 меняет знак с + на -, то x0 - точка максимума, если с - на +, то x0 - точка минимума, если не меняет знак, то в этой точке нет экстремума. 2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x0, причем f '(x0) = 0, f ''(x0) ≠ 0, то в точке x0 функция f(x0) имеет максимум, если f ''(x0) < 0 и минимум, если f ''(x0) > 0. Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).
Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью: π (q) = R(q) - C(q) = q2 - 8q + 10 Решение: π '(q) = R'(q) - C'(q) = 2q - 8 = 0 → qextr = 4 При q < qextr = 4 → π '(q) < 0 и прибыль убывает При q > qextr = 4 → π '(q) > 0 и прибыль возрастает При q = 4 прибыль принимает минимальное значение. Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.
Эластичность спроса Эластичностью функции f(x) в точке x0 называют предел Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса ED - это величина, характеризующая то, как спрос реагирует на изменение цены. Если │ ED│ > 1, то спрос называется эластичным, если │ ED│ < 1, то неэластичным. В случае ED=0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.
Предельный анализ
Важный раздел методов дифференциального исчисления, используемых в экономике - методы предельного анализа, т. е. совокупность приемов исследования изменяющихся величин затрат или результатов при изменениях объемов производства, потребления и т. п. на основе анализа их предельных значений. Предельный показатель (показатели) функции - это ее производная (в случае функции одной переменной) или частные производные (в случае функции нескольких переменных) В экономике часто используются средние величины: средняя производительность труда, средние издержки, средний доход, средняя прибыль и т. д. Но часто требуется узнать, на какую величину вырастет результат, если будут увеличены затраты или наоборот, насколько уменьшится результат, если затраты сократятся. С помощью средних величин ответ на этот вопрос получить невозможно. В подобных задачах требуется определить предел отношения приростов результата и затрат, т. е. найти предельный эффект. Следовательно, для их решения необходимо применение методов дифференциального исчисление.
Интерполяция
Интерполяцией называется приближенное вычисление значений функции по нескольким данным ее значениям. Интерполяция широко используется в картографии, геологии, экономике и других науках. Самым простым вариантом интерполяции является форма Лагранжа, но когда узловых точек много и интервалы между ними велики, либо требуется получить функцию, кривизна которой минимальна то прибегают к сплайн-интерполяции, дающей бó льшую точность.
Пусть Kn - система узловых точек a = x0 < x1 < …< xn = b. Функция Sk(x) называется сплайн-функцией Sk(x) степени k≥ 0 на Kn, если а) Sk(x) є Ck-1([a, b]) б) Sk(x) - многочлен степени не большей k
Сплайн-функция Ŝ k(x) є Sk(Kn) называется интерполирующей сплайн-функцией, если Ŝ k(xj) = f(xj) для j = 0, 1, …, n
В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию. Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є [xj-1, xj] Здесь s2j, cj1, cj0 неизвестны для j = 1, 2, …, n Последние исключаются в силу требования s(xj) = yj: Дифференцируя эту функцию и учитывая, что s'(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений: относительно n+1 неизвестных s20, s21, …, s2n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:
Нормальный случай( N):
Периодический случай( P) (т. е. f( x+( xn- x0))= f( x)):
Заданное сглаживание на границах:
Пример: сплайн-интерполяция функции f(x)=sin x, n=4. Функция периодическая, поэтому используем случай P.
Сплайн-функция получается такая:
Формула Тейлора
Разложение функций в бесконечные ряды позволяет получить значение функции в данной точке с любой точностью. Этот прием широко используется в программировании и других дисциплинах
Говорят, что функция разлагается на данном промежутке в степенной ряд, если существует такой степенной ряд a0 + a1(x - a) + a2(x - a)2 + … + an(x - a)n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно: Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.
С помощью ряда Маклорена можно получить простые разложения элементарных функций:
Приближенные вычисления
Часто бывает, что функцию f(x) и ее производную легко вычислить при x = a, а для значений x, близких к a, непосредственное вычисление функции затруднительно. Тогда пользуются приближенной формулой, полученной с помощью формулы Тейлора:
Пример: Извлечь квадратный корень из 3654 Решение: , x0=3654. Легко вычисляются значения f(x) и при x = 3600. Формула при a = 3600, b=54 дает: С помощью этой формулы можно получить несколько удобных формул для приближенных вычислений:
Структура учебников
Колмогоров: §4. Производная 12. Приращение функции 13. Понятие о производной 14. Понятия о непрерывности и предельном переходе 15. Правила вычисления производных 16. Производная сложной функции 17. Производные тригонометрических функций §5. Применение непрерывности и производной 18. Применения непрерывности 19. Касательная к графику функции 20. Приближенные вычисления 21. Приоизводная в физике и технике §6. Применение производной к исследованию функций 22. Признак возрастания (убывания) функции 23. Критические точки функции, максимумы и минимумы 24. Примеры применения производной к исследованию функции 25. Наибольшее и наименьшее значения функции
Алимов: Глава V. Производная и ее применение §22. Производная §23. Производная степенной функции §24. Правила дифференцирования §25. Производные некоторых элементарных функций §26. Геометрический смысл производной Глава VI. Применение производной к исследованию функций §27. Возрастание и убывание функции §28. Экстремумы функции §29. Применение производной к построению графиков функции §30. Наибольшее и наименьшее значения функции
Башмаков: Глава II. Производная и ее применение Вводная беседа Механический смысл производной Геометрический смысл производной Определение производной Предельные переходы §1. Вычисление производной Схема вычисления производной Правила дифференцирования Производная степени Линейная замена аргумента §2. Исследование функций с помощью производной Связь свойств функции и ее производной Особые точки Решение задач Построение графика функции §3. Приложения производной Скорость и ускорение Скорость криволинейного движения Дифференциал Дифференциал в физике Задачи на максимум и минимум Приближенные формулы Понятие производной Определение производной
В учебниках Алимова и Башмакова вначале определение производной дается через механический смысл: производная – это мгновенная скорость. Это соответствие, пожалуй, наиболее доступно для понимания школьника.
Рассмотрев задачу на скорость, Алимов сразу же переходит к точному определению производной через пределы, кратко объяснив значение понятия «предел» в той же задаче применительно к мгновенной скорости.
Башмаков же последовательно и детально рассматривает механический и геометрический смысл, рассматривая производную на разных случаях, и только потом переходит к точному определению.
Подход Колмогорова отличается тем, что глава, посвященная производной, начинается с пункта, в котором дается определение приращения функции. Понятие приращения рассматривается на примерах. Третий пример показывает, как найти угловой коэффициент секущей через приращение. В следующем пункте автор объясняет, что такое касательная к графику функции и дает определение мгновенной скорости. Причем, определение предела не рассматривается, вместо этого Колмогоров пользуется понятием «стремится к».
Проанализировав систему ознакомления учащегося с понятием производной в этих учебниках, можно выявить следующие особенности: короткое вступление главы о производных в учебнике Алимова дает возможность учащимся, получив минимум информации о производной, как можно быстрее приступить к вычислению производных. Далее, понятие производной обогащается новыми приложениями и свойствами и все это немедленно подкрепляется задачами. Колмогоров и Башмаков стремятся вначале подвести достаточно большую базу примеров и соответствий, опираясь на более легкие по усвояемости понятия и затем приступить к вычислениям.
Вычисление производной
Правила дифференцирования
Напомним основные правила дифференцирования:
сумма: (u + v)’ = u’ + v’ коэффициент: (Cu)’ = Cu’ произведение: (uv)’ = u’v + uv’ частное: (u / v)'=(u'v - uv') / v2
В учебниках Башмакова и Колмогорова все эти формулы выводятся, каждый шаг объясняется. Учебник Алимова содержит доказательства только двух первых формул, зато к каждой формуле есть по 1-2 примера.
В учебнике Колмогорова рассматривается формула производной сложной функции (гл 2, §16):
f(g(x))’ = f ’(g(x))g’(x)
Вначале автор дает определение сложной функции, затем выводит формулу и приводит несколько примеров нахождения производной сложных функций. Алимов решил упростить данный раздел, заменив формулу сложной функции на ее частный случай – линейную замену аргумента:
(f(kx + b))’ = kf ‘(kx + b)
Эта формула, конечно, гораздо менее емкая, зато ее доказательство короче и менее абстрактно. Башмаков же включил в учебник обе формулы.
Исследование функций
Экстремумы функций
Основополагающими теоремами в этом пункте являются: необходимое условие экстремума (производная в точке экстремума должна быть равна 0), признаки максимума / минимума функции. Согласно просматривающемуся стилю авторов, Колмогоров методично доказывает каждую теорему, Алимов делает упор на рассмотрение задач, а Башмаков по возможности в доказательствах и рассуждениях обходится без формул, предпочитая рассказ о свойствах производной.
Замечу, что Башмаков выделил пункт для рассмотрения т. н. особых точек. Это точки, в которых производная не существует, но функция может быть непрерывной. Колмогоров рассматривает их в пункте «применение непрерывности». Кроме того, там же рассматривается важнейший метод исследования поведения функции – метод интервалов.
Схема исследования функций
Колмогоров: 1) Нахождение области определения 2) Проверка на четность / нечетность 3) Нахождение точек пересечения с осями 4) Нахождение промежутков знакопостоянства 5) Нахождение промежутков возрастания и убывания 6) Нахождение точек экстремума и значений функции в этих точках 7) Исследование поведения функции в окрестностях «особых» точек и бесконечности
Башмаков и Алимов исследуют функцию только на монотонность.
Приложения производной
Приближенные вычисления
Формула для приближенных вычислений разбирается в учебнике Колмогорова и Башмакова. Авторы указывают на сходство графиков функции и касательной и значения будут ненамного различаться при достаточно малом приращении. Эта тема носит практический характер. Рассмотрены несколько примеров. Заключение
Принимая в расчет вышеизложенное, я могу дать такую характеристику этим учебникам: Учебник под редакцией Колмогорова характеризуется большим объемом материала по производной и высокой степенью детальности. Как следствие – высокий уровень подготовки и некоторая сложность в понимании. Этот учебник по праву наиболее часто используется в обычных школах.
Учебник Алимова делает больший упор на практическую сторону. В тексте много примеров решения задач, некоторые пункты даже целиком состоят из них. К каждому пункту прилагается большой набор задач для самостоятельного решения. Доказательства – слабая сторона учебника, т. к. они кратки, а зачастую их нет совсем. Некоторые аспекты темы опущены.
В учебнике Башмакова материал излагается крайне сжато, но последовательно и доказательства более просты и понятны. Все абстрактные математические понятия находят свои житейские прототипы и рассматриваются на конкретных примерах. Учебник больше подходит для самостоятельного изучения материала. Литература
Содержание: Введение Глава 1. Производная и ее применение 1. Понятие производной 1-1. Исторические сведения 1-2. Понятие производной 1-3. Правила дифференцирования и таблица производных 2. Геометрический смысл производной 2-1. Касательная к кривой 2-2. Касательная плоскость к поверхности 3. Использование производной в физике 3-1. Скорость материальной точки 3-2. Теплоемкость при данной температуре 3-3. Мощность 4. Дифференциальное исчисление в экономике 4-1. Исследование функций 4-2. Эластичность спроса 4-3. Предельный анализ 5. Производная в приближенных вычислениях 5-1. Интерполяция 5-2. Формула Тейлора 5-3. Приближенные вычисления Глава 2. Производная в школьном курсе алгебры 1. Структура учебников 2. Понятие производной 2-1. Определение производной 2-2. Геометрический смысл производной 2-3. Непрерывность функции и предельный переход Вычисление производной 3-1. Правила дифференцирования 3-2. Производные элементарных функций Исследование функций 4-1. Возрастание и убывание функций 4-2. Экстремумы функций 4-3. Схема исследования функций Приложения производной 5-1. Применение производной в физике 5-2. Приближенные вычисления Заключение Список использованной литературы Курсовая работа Тема: Производная в курсе алгебры средней школы
Южно-Сахалинск 2002г В первой главе курсовой работы речь пойдет о понятии производной, ее истории и областях ее применения. Во второй главе будет детально рассмотрен курс изучения производной трех учебников по алгебре и началам анализа для 10-11кл.: Алимова, Башмакова и под редакцией Колмогорова. Цель курсовой работы – раскрыть понятие производной, рассмотреть систему ее изучения в учебниках средней школы, охарактеризовать особенности изложения материала и дать рекомендации по поводу использования этих учебников.
Производная и ее применение
Понятие производной
Исторические сведения
Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач: 1) о разыскании касательной к произвольной линии 2) о разыскании скорости при произвольном законе движения Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда. В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.
Понятие производной
Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х0 - произвольная точка этого промежутка Дадим аргументу x приращение ∆ x, тогда функция y = f(x) получит приращение ∆ y = f(x + ∆ x) - f(x). Предел, к которому стремится отношение ∆ y / ∆ x при ∆ x → 0, называется производной от функции f(x). y'(x)=
1-3. Правила дифференцирования и таблица производных
|
Последнее изменение этой страницы: 2019-10-03; Просмотров: 216; Нарушение авторского права страницы