Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Дифференциальное исчисление в экономике ⇐ ПредыдущаяСтр 2 из 2
Исследование функций
Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции. По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума: 1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x0. Если производная f '(x) при переходе через точку x0 меняет знак с + на -, то x0 - точка максимума, если с - на +, то x0 - точка минимума, если не меняет знак, то в этой точке нет экстремума. 2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x0, причем f '(x0) = 0, f ''(x0) ≠ 0, то в точке x0 функция f(x0) имеет максимум, если f ''(x0) < 0 и минимум, если f ''(x0) > 0. Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).
Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью: π (q) = R(q) - C(q) = q2 - 8q + 10 Решение: π '(q) = R'(q) - C'(q) = 2q - 8 = 0 → qextr = 4 При q < qextr = 4 → π '(q) < 0 и прибыль убывает При q > qextr = 4 → π '(q) > 0 и прибыль возрастает При q = 4 прибыль принимает минимальное значение. Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.
Эластичность спроса Эластичностью функции f(x) в точке x0 называют предел Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса ED - это величина, характеризующая то, как спрос реагирует на изменение цены. Если │ ED│ > 1, то спрос называется эластичным, если │ ED│ < 1, то неэластичным. В случае ED=0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.
Предельный анализ
Важный раздел методов дифференциального исчисления, используемых в экономике - методы предельного анализа, т. е. совокупность приемов исследования изменяющихся величин затрат или результатов при изменениях объемов производства, потребления и т. п. на основе анализа их предельных значений. Предельный показатель (показатели) функции - это ее производная (в случае функции одной переменной) или частные производные (в случае функции нескольких переменных) В экономике часто используются средние величины: средняя производительность труда, средние издержки, средний доход, средняя прибыль и т. д. Но часто требуется узнать, на какую величину вырастет результат, если будут увеличены затраты или наоборот, насколько уменьшится результат, если затраты сократятся. С помощью средних величин ответ на этот вопрос получить невозможно. В подобных задачах требуется определить предел отношения приростов результата и затрат, т. е. найти предельный эффект. Следовательно, для их решения необходимо применение методов дифференциального исчисление.
Производная в приближенных вычислениях
Интерполяция
Интерполяцией называется приближенное вычисление значений функции по нескольким данным ее значениям. Интерполяция широко используется в картографии, геологии, экономике и других науках. Самым простым вариантом интерполяции является форма Лагранжа, но когда узловых точек много и интервалы между ними велики, либо требуется получить функцию, кривизна которой минимальна то прибегают к сплайн-интерполяции, дающей бó льшую точность.
Пусть Kn - система узловых точек a = x0 < x1 < …< xn = b. Функция Sk(x) называется сплайн-функцией Sk(x) степени k≥ 0 на Kn, если а) Sk(x) є Ck-1([a, b]) б) Sk(x) - многочлен степени не большей k
Сплайн-функция Ŝ k(x) є Sk(Kn) называется интерполирующей сплайн-функцией, если Ŝ k(xj) = f(xj) для j = 0, 1, …, n
В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию. Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є [xj-1, xj] Здесь s2j, cj1, cj0 неизвестны для j = 1, 2, …, n Последние исключаются в силу требования s(xj) = yj: Дифференцируя эту функцию и учитывая, что s'(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений: относительно n+1 неизвестных s20, s21, …, s2n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:
Нормальный случай( N):
Периодический случай( P) (т. е. f( x+( xn- x0))= f( x)):
Заданное сглаживание на границах:
Пример: сплайн-интерполяция функции f(x)=sin x, n=4. Функция периодическая, поэтому используем случай P.
Сплайн-функция получается такая:
Формула Тейлора
Разложение функций в бесконечные ряды позволяет получить значение функции в данной точке с любой точностью. Этот прием широко используется в программировании и других дисциплинах
Говорят, что функция разлагается на данном промежутке в степенной ряд, если существует такой степенной ряд a0 + a1(x - a) + a2(x - a)2 + … + an(x - a)n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно: Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.
С помощью ряда Маклорена можно получить простые разложения элементарных функций:
Приближенные вычисления
Часто бывает, что функцию f(x) и ее производную легко вычислить при x = a, а для значений x, близких к a, непосредственное вычисление функции затруднительно. Тогда пользуются приближенной формулой, полученной с помощью формулы Тейлора:
Пример: Извлечь квадратный корень из 3654 Решение: , x0=3654. Легко вычисляются значения f(x) и при x = 3600. Формула при a = 3600, b=54 дает: С помощью этой формулы можно получить несколько удобных формул для приближенных вычислений:
|
Последнее изменение этой страницы: 2019-10-03; Просмотров: 263; Нарушение авторского права страницы