Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


РОЛЬ И МЕСТО МОБИЛЬНОЙ СВЯЗИ



РОЛЬ И МЕСТО МОБИЛЬНОЙ СВЯЗИ

НА РЫНКЕ ИНФОРМАЦИОННЫХ УСЛУГ

 Мобильными системами связи называю такие сети, которые обладают различными комбинациями мобильности.

  Терминальная мобильность – возможность МС получать услуги связи при движении и способность сети идентифицировать, определять местоположение и сопровождать терминал.

  Персональная мобильность – возможность пользователя получать услуги связи (прием и посылку вызова) с любой МС на базе персонального идентификатора и способность сети обеспечить эти услуги, в соответствии с потребностями пользователя. Персональная мобильность подразумевает способность сети определять МС пользователя с целью операции, сопровождения и выполнения вызова.

В настоящее время в России получили применение следующие мобильные системы:

· сотовые системы

· транкенговые системы

· системы персонального радиовызова

· системы бесшнуравой телефонии

· глобальные спутниковые системы

 На конец 1998 г. число абонентских сетей подвижной радиосвязи составляет 800 тыс. абонентов. Из них около 770 тыс. абоненты сотовой связи в 74 регионах, пэйджинг 450 тыс. абонентов в 69 регионах, транкенговых 40 тыс. Абонентов.

Однако развитие мобильности затрудняется по ряду причин:

· острый дефицит спектра частот

· низкий уровень телефонизации в России

· низкая плотность населения и неравномерность распределения

· низкая платежеспособность населения

 Сотовая связь, вступившая в 26–ой год своего существования и16–ый год коммерческого использования, продолжает уверенно расширять рынок предоставления услуг. На смену аналоговым приходят цифровые системы второго поколения и в то же время ведутся интенсивные подготовки систем третьего поколения.

 На этом фоне успехи в Росси в развитии сотовой связи более, чем скромны: на долю России приходится менее 0, 2% мировой абонентской баз, а проникновение в 15 раз ниже среднемирового, в 50 раз ниже Западно–Европейского и более, чем в150 раз ниже, чем в Скандинавских странах. Такое отставание недопустимо потому, что мобильная связь – серьезный смысл экономического прогресса.

Коммерческая эксплуатация сотовой связи началась в 1981–1982 г.г.(Ближний Восток, Скандинавия, США, Япония). По состоянию на начало 1997г. сотовой связью пользуется около 40 млн. абонентов, более чем в 110 странах всех континентов.

 Доминирующее положение на мировом рынке занимает Северо–Американский стандарт AMPS/D-AMPS, на него приходится более половины всей абонентской базы мира. На втором месте (пятая часть абонентской базы) находится общеевропейский стандарт GSM, включая GSM 900, GSM 1800, GSM 1900. На долю всех остальных стандартов, вместе взятых, остается менее 30% абонентской базы.

 Аналоговые системы связи пока доминируют, на их долю приходится около 2/3 абонентской базы. Но цифровые сети растут быстрее аналоговых: относительный годовой прирост абонентской базы цифровых сетей почти втрое превышает средний, по всем сетями почти в пять раз по аналоговым.

 Основную часть цифровых сотовых систем составляют, сети GSM на них приходится около 60% абонентской базы цифровых сетей мира.

Далее идут RDS (Японии) и D-AMPS (Американский TDMA) – соответственно 31% и 8%, ”цифровой части” абонентской базы (Рисунок-1, 2).В 1995г. Была начата коммерческая эксплуатация сетей CDMA.

                 

     В России коммерческое использование сотовой связи началось 1991–1993г.г. По данным Госкомнадзора абонентов сотовой связи около 770 тыс. в 74 регионах и к 2000г. достигнет 1, 2 млн. абонентов.

– начало 1999г.

NMT-450 210000 тыс. аб.   AMPS/D-AMPS 250000 тыс. аб.

GSM-900 291000 тыс. аб.   GSM-1800        21000 тыс. аб.

 Наиболее распространенным в России стандарт AMPS/D-AMPS на его долю приходится почти половина абонентской базы. Рост числа абонентов AMPS/D-AMPS растет за счет создания новых сетей в уже существующих. Оставшуюся часть делят между собой NMT-450 и GSM-900. Цифровые сети в России растут также быстрее аналоговых: относительный годовой прирост абонентской базы цифровых сетей в два с лишнем раза выше аналоговых.

На рынке услуг сотовой связи работают компании: Московская сотовая связь, БиЛайн, Дельта Телеком, Северо–Западный GSM, Сотел и многие другие фирмы операторы.

Таблица 1. Стандарты сотовой связи,                                                                                                   применяемые на территории России

Стандарт, система Диапа­зон, МГц Характерис­тика Статус Регион России Распространен­ность в мире Примечание
D-AMPS, 800 Цифровой Региональный Москва, Омск, Северная и Южная Наиболее широко приме-­
IS-54, IS-136     TDMA   Иркутск. Оренбург Америка и др. няемые стандарты в мире
                        (кроме Европы)
AMPS, 800 Аналоговый Тоже Архангельск, Северная и Южная    
EIA/TIA-553             Владивосток, Воронеж и др. Америка и др.    
N-AMPS, 800         Санкт-Петербург, США Малораспространенный
IS-88.IS-91             Новосибирск     стандарт
IS-95 800 Цифровой Только для Москва, Челябинск Северная Америка    
        CDMA Местной     и Южная Азия    
            связи (WLL)     (для сотовых систем    
                    и систем PCS)    
GSM 900 Цифровой Федеральный Москва, Санкт-Петербург, Европа и др. Основной стандарт
        TDMA     Челябинск.     для Европы
                Ростов-на-Дону и др.        
DCS-1800 1800 Цифровой Не установлен Москва Европа и др.    
        TDMA                
NMT-450 450 Аналоговый Федеральный Москва. Санкт-Петербург. Скандинавские    
                Псков, Омск, Новгород страны    
                и областные регионы        

 

 

ОБЗОР СИСТЕМ СОТОВОЙ СВЯЗИ

В ДИАПОЗОНЕ 800 МГц

Это один из диапазонов с наиболее ожесточенной конкуренцией. На рынке коммуникаций в этом диапазоне предлагается оборудование для систем связи в разнообразных стандартах. В ос­новном это диапазон пакета американских стандар­тов, куда входят аналоговый стандарт EIA/TIA-553 (часто обозначаемый просто как AMPS 800) цифро­вые стандарты TDMA IS-54 и IS-136 и цифровой стан­дарт CDMA 1S-95. Все ли стандарты применяются также и в России для региональных сотовых систем данного диапазона

.

 

СИСТЕМА AMPS ПО СТАНДАРТУ EIA/TIA-553

Это по-видимому, самая совершенная из совре­менных аналоговых систем сотовой связи. Однако, как все аналоговые системы, она имеет низкую спектраль­ную эффективность. Обратная спектральная эффек­тивность 210 кГц/сеанс связи (в среднем на 3-сектор-ную БС). Поэтому она постепенно (хотя и медленно) вытесняется цифровыми системами и практически не развивается. К моменту появления цифровых систем множественного доступа эта система была уже очень широко распространена, в особенности в США. Поэ­тому согласно американским правилам все системы пакета американских стандартов в диапазоне 800 МГц должны обеспечивать сервис терминалам по стандарт ЕIА/ТIА-553. Это правило налагает достаточно серьез­ные ограничения на цифровые американские системы, из которых главным является предопределенная (и по-видимому, неоптимальная) ширина частотного канала систем цифровых ТDMA D-AMPS. а также не­обходимость выделять некоторое количество частот­ных каналов для аналоговой связи, в результате чего полоса частот используется менее эффективно. Хотя как было отмечено ранее, системы по стандарту EIA/TIA-553 частично устарели, по в силу их обяза­тельной поддержки со стороны всех развивающихся американских цифровых систем стандарт EIA/TIA-553 имеет все шансы войти в систему персональной связи " на их плечах»,

В России системы по стандарту EIA/TIA-553 уста­новлены в более чем 40 городах (Архангельск, Астра­хань, Владивосток, Владимир, Воронеж, Мурманск, Нижний Новгород, Омск, Петропавловск, Ростов-на-Дону, Саратов, Сочи, Тюмень, Хабаровск, Челябинск и другие). Однако можно полагать, что в крупных го­родах он постепенно будет )изменяться цифровыми. Например, в Москве в диапазонах выше 450 МГц теперь применяются только цифровые системы — D-AMPS и GSM. В районах же с невысокой плотностью населения с ними вполне могут конкурировать систе­мы в стандарте NMT-450, а в ближайшем будущем и системы персональной спутниковой связи. Поэтому сохранять в России требование обязательной его под­держки цифровыми системами пакета американских стандартов в достаточно далекой перспективе может быть и нецелесообразно. В этой связи все же следует отметить, что для систем по стандартам IS-54 и IS-136 не следует переоценивать при этом возможный выиг­рыш: число выделенных для аналоговой связи каналов невелико, а никаких иных изменений локально для России сделать нельзя.

 

УСЛУГИ

 

В конечном итоге объем и качество предоставля­емых услуг определяют перспективность и совре­менность любой системы связи. Расширение ус­луг — это в конечном счете увеличение прибыли, это то, что двигает технику вперед.

Вот далеко не полный перечень разрабатывае­мых и частично уже внедряемых современных услуг связи.

· Передача сообщенйй. До сих пор ис­пользовались в основном голосовая почта и пейджинговые сообщения. Но есть и другие возможные опции, такие как оповещение абонента о получе­нии голосового сообщения в любой момент, под­ключение к разговору в момент получения голосо­вого сообщения, а не после, передача коротких со­общений с отображением непосредственно на дис­плее радиотелефона, в том числе и широковеща­тельных, и др. Разрабатываются алгоритмы перево­да сообщений из одной среды в другую (например, из Е-почты в короткое сообщение или факс и т.д.), алгоритмы распознавания и конвертирования текс­тов в речь или наоборот, автоматизированная пере­сылка сообщения на Е-почту, если абонент в дан­ный момент занят, и др.

· Передача данных которая не ограничи­вается только передачей приемом данных, а пре­дусматривает возможность ПЕРЕДАЧИ И ПРИ­ЕМА МУЛЬТИМЕДИА.

· Роуминг. Согласно предусматриваемой концепции развития абонент должен всегда и везде без проблем пользоваться своим радиотелефоном неза­висимо от используемого в системах стандарта и диапазона частот.

· Индификация вызывающего абонента. Это либо высвечивание но­мера вызывающего на сотовом радиотелефоне, ли­бо сообщение номера радиотелефона вызывающего абонента его собственным голосом.

· Оплата вызовов за счет вызывающего або­нента.

· Доступ через радиотелефонный аппарат к СВОЕМУ ДОМАШНЕМУ КОМПЬЮТЕРУ (Remote Control of Call Waiting).

· Использование «интеллектуальных» карт для идентификации абонента.

* Персональный единый номер. С рас­ширением объема индивидуальных услуг телефон­ные номера становятся связанными с личностью, а не с местом пребывания. Попросту говоря, ПЕР­СОНАЛЬНЫЙ ЕДИНЫЙ НОМЕР является тем ушком, по которому абонент может получить услу­гу, где бы он ни находился. В США все больше и больше номеров выделяется для услуги ПЕРСО-НАЛЬНОЕО ЕДИНОГО НОМЕРА. Предоставление услуги ПЕРСОНАЛЬНОГО ЕДИНОГО НОМЕРА предусматривает создание платформ, которые будут автоматически направлять вызов на сотовый телефон, если он включен, или же на «интеллектуальную погрузочную станцию», ко­торая направит вызов либо на офисный, либо на до­машний телефон. Абонент может также обозначить номер, по которому будут перенаправляться все вы­зовы. Можно будет МАРШРУТИЗИРОВАТЬ вызо­вы, например, направив сигнал вызова домой или в офис, затем на сотовый телефон и, в конце кон­цов, на голосовую почту. Приходящие факсы можно будет отображать на экранах компьютеров.

Маршрутизирование вызовов — это первый этап ввода услуги персонального единого номера. Одна­ко программирование информации о маршрутизировании вызова громоздко и зачастую требует учас­тия в этом процессе самого абонента. В перспекти­ве предполагается полная автоматизация процесса.

 

ХАРАКТЕРИСТИКИ СТАНДАРТОВ

AMPS И D - AMPS

 3.1 ХАРАКТЕРИСТИКИ СТАНДАРТА AMPS

Стандарт аналоговый

Метод доступа - TDMA

Разнос каналов: 30 кГц

Вид модуляции - л/4 DQPSK

СТРУКТУРНАЯ СХЕМА РАДИО-

КАНАЛА РАДИОТЕЛЕФОНА


 

Рисунок 3. СТРУКТУРНАЯ СХЕМА АНАЛОГОВОГО КАНАЛА

 

Структурная схема радиотелефона аналогового стандарта ETACS представ­лена на (рисунке 3). Передающий и приемный блоки выполнены по классичес­кой схеме. Приемное устройство представляет собой супергетеродинный приемник с двойным преобразованием частоты. Входной сигнал поступает в полосовой фильтр на ПАВ, выделяющий принимаемый сигнал и ослабляю­щий помехи. Отфильтрованный сигнал fС (869 – 894 МГц) поступает в малошумящий усили­тель (МШУ) и после усиления подается в смеситель. На второй вход послед­него с синтезатора частот поступает сигнал гетеродина, fПРМ (914 – 939 МГц). Полученный сигнал первой промежуточной частоты fПР (45 МГц) поступает в усилитель первой промежуточной частоты УПЧ1 и после усиления фильтруется полосовым фильтром на ПАВ. Отфильтрованный сигнал fПР поступает во второй смеситель. В него же с гетеродина Г поступает сигнал fГ Полученный в резуль­тате гетеродинирования сигнал второй промежуточной частоты fПР2 частотой 450 kГц фильтруется полосовым фильтром на ПАВ и усиливается усилителем УПЧ2. Усиленный до необходимого уровня сигнал поступает в фазовый демо­дулятор, где выделяются сигналы управления и речевой сигнал. Последний поступает в усилитель УНЧ и далее — на громкоговоритель. Сигналы управле­ния обрабатываются процессором CPU.

Аналоговый сигнал, поступающий с микрофона, усиливается усилителем УНЧ до необходимого уровня и поступает в фазовый модулятор Гфц как сигнал fМОД. Промодулированный сигнал fФМ частотой 90 МГц через полосовой фильтр на ПАВ поступает в смеситель. В него же с синтезатора частот приходит сигнал fпрд (914–939 МГц). С выхода смесителя сигнал fс1 через полосовой керамический фильтр поступает в усилитель мощности класса С, обеспечивающий максимальный КПД передатчика. Усиленный сигнал через регулятор мощности УМ и поло­совой керамический фильтр поступает к антенне. Обработка сигналов управ­ления, опрос клавиатуры, формирование необходимых частот и вывод инфор­мации на дисплей происходит под управлением центрального процессора. Синтезатор частоты позволяет получать высокостабильные сигналы частот всего используемого диапазона.

 

 

СТРУКТУРНАЯ СХЕМА СОТОВОГО

КАНАЛА РАДИОТЕЛЕФОНА

 

Рисунок 4. СТРУКТУРНАЯ СХЕМА СОТОВОГО КАНАЛА

 

Речевое кодирование - аналоговый речевой сигнал преобразуется в цифровую форму VSELP (Vector Sum Excited Linear Prediction) кодером (Рисунок 4). Речевой сигнал разбивается на сегменты по 20 мс, которые преобразуются в 159 кодированных бит, передаваемых со скоростью 7, 95 кбит/с. Метод кодирования VSELP, разработанный фирмой Motorola, обеспечивает достаточно высокое качество передачи речи. Качество передаваемого сигнала, оцениваемое по пятибалльной шкале усредненной субъективной оценки MOS (Mean Opinion Score), равно 3, 435 балла.

Канальное кодирование - для канального кодирования используется сверточный код со скоростью r = '/2 (Рисунок 5). В этом процессе пакет в 159 бит от речевого кодера разбивается на две группы бит: класс 1-77 бит, класс 2-82 бита. В группе бит 1 класса осуществляется указанное сверточное кодирование, причем 7 бит используются для обнаружения ошибок, биты второго класса передаются без кодирования. В результате преобразований в канальном кодере речевой фрагмент 20 мс представляется 260 битами, что соответствует скорости передачи 13 кбит/с.

 

Формирование TDMA-кадра (Рисунок 7)- структура TDMA-кадров в прямом и обратном каналах, для стандарта с полу скоростным речевым каналом.

 

Модуляция (Рисунок 8) - для передачи сообщений по радиоканалу используется спектрально-эффективная p/4 DQPSK-модуляция, реализуемая квадратурной схемой с прямым переносом на несущую частоту.

 

 

 

 


Рисунок 8. p /4 DQPSK-МОДУЛЯЦИЯ

 

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4).

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы у, которые подаются в квадратурный канал (coswt), и четные — х, поступающие в синфазный канал (sin-wt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулирующих импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t). Манипулирующие импульсы имеют амплитуду Urn / Ö 2 и длительность 2 Т. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, p) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

Четырехфазная ФМ со сдвигом (OQPSK - Offset QPSK) позволяет избежать скачков фазы на 180° и, следовательно, глубокой модуляции огибающей. Формирование сигнала в квадратурной схеме происходит так же, как и в модуляторе ФМ-4, за исключением того, что манипуляционные элементы информационной последовательности x(t) и y(t) смещены во времени на длительность одного элемента Т.

РОЛЬ И МЕСТО МОБИЛЬНОЙ СВЯЗИ


Поделиться:



Последнее изменение этой страницы: 2019-10-04; Просмотров: 180; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.051 с.)
Главная | Случайная страница | Обратная связь