Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


СТРУКТУРНАЯ СХЕМА ЭВМ. ПОКОЛЕНИЯ ЭВМ



ОГЛАВЛЕНИЕ

 

1. СТРУКТУРНАЯ СХЕМА ЭВМ. ПОКОЛЕНИЯ ЭВМ                                 3

2. СИСТЕМЫ СЧИСЛЕНИЯ.                                                                      4

3. АРИФМЕТИЧЕСКИЕ ДЕЙСТВИЯ НАД ДВОИЧНЫМИ ЧИСЛАМИ        6

3.1 Вычитание с применением обратного кода.                                     6

3.2 Образование дополнительного кода.                                                7

4. УЗЛЫ ЭВМ.                                                                                            7

5. СУММАТОР                                                                                           8

6. ПОСЛЕДОВАТЕЛЬНЫЙ СУММАТОР                                                    9

7. АРИФМЕТИКО - ЛОГИЧЕСКОЕ УСТРОЙСТВО (АЛУ)                         10

8. ДЕШИФРАТОР                                                                                    12

9. ПРЕОБРАЗОВАТЕЛИ С ЦИФРОВОЙ ИНДИКАЦИЕЙ                        14

10. ПРЕОБРАЗОВАТЕЛЬ КОДА 8421 В 2421                                           15

11. ПРОГРАММИРУЕМАЯ ЛОГИЧЕСКАЯ МАТРИЦА (ПЛМ)                    16

12. НАКАПЛИВАЮЩИЙ СУММАТОР                                                       17

13. ОСНОВНЫЕ МИКРОПРОЦЕССОРНЫЕ КОМПЛЕКТЫ                      18

14. ТИПОВАЯ СТРУКТУРА ОБРАБАТЫВАЮЩЕЙ ЧАСТИ МП                21

15. МИКРО ЭВМ НА БАЗЕ МП К580                                                         22

16. ФОРМАТЫ КОМАНД И СПОСОБЫ АДРЕСАЦИИ                             24

17. ЦЕНТРАЛЬНЫЙ ПРОЦЕССОРНЫЙ ЭЛЕМЕНТ К580                         26

18. СИСТЕМА СБОРА ДАННЫХ НА БАЗЕ МП К580                                27

19. ЦЕНТРАЛЬНЫЙ ПРОЦЕССОРНЫЙ ЭЛЕМЕНТ (ЦПЭ) К589              29

20. БЛОК МИКРОПРОГРАММНОГО УПРАВЛЕНИЯ (БМУ).                     30

21. СТРУКТУРНАЯ СХЕМА И ПРИНЦИП ДЕЙСТВИЯ БЛОКА

МИКРОПРОГРАММНОГО УПРАВЛЕНИЯ (БМУ)                                   32

22. БЛОК ПРИОРИТЕТНОГО ПРЕРЫВАНИЯ (БПП)                                34

23. СХЕМА УСКОРЕННОГО ПЕРЕНОСА (СУП)                                       35

24. СХЕМА ОДНОРАЗРЯДНОГО СУММАТОРА С ФОРМИРОВАНИЕМ

ЦИФРЫ ПЕРЕНОСА В СУП                                                                  36

25. ОРГАНИЗАЦИЯ ПАМЯТИ ЭВМ                                                          37

26. ПОСТОЯННЫЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА (ПЗУ)                 39

27. ВНЕШНИЕ ЗАПОМИНАЮЩИЕ УСТРОЙСТВА (ВЗУ)                         40

27.1 Метод записи без возврата к нулю                                               41

27.2 Фазовая модуляция.                                                                     41

27.3 Частотная модуляция.                                                                  42

28. УСТРОЙСТВА ВВОДА - ВЫВОДА ИНФОРМАЦИИ                            42

29. ВЫВОД ИНФОРМАЦИИ НА ДИСПЛЕЙ                                              43

30. ВЫВОД ИНФОРМАЦИИ НА ТЕЛЕТАЙП                                            45

31. ИНТЕРФЕЙС                                                                                      46

32. ОБМЕН ДАННЫМИ МЕЖДУ ОПЕРАТИВНОЙ ПАМЯТЬЮ И

ПЕРИФЕРИЙНЫМИ УСТРОЙСТВАМИ (ПУ)                                         48

33. ОБМЕН ДАННЫМИ ПО ПРЕРЫВАНИЯМ                                           51

34. СПЕЦИАЛИЗИРОВАННЫЕ УСТРОЙСТВА ИНТЕРФЕЙСА. АЦП       53

35. АЦП С ОБРАТНОЙ СВЯЗЬЮ (ОС)                                                    54

36. АЦП СЛЕДЯЩЕГО ТИПА.                                                                  55

37. ЦАП С СУММИРОВАНИЕМ НАПРЯЖЕНИЯ НА ОПЕРАЦИОННОМ

УСИЛИТЕЛЕ (ОУ).                                                                                55

38. ПРИМЕНЕНИЕ МИКРО ЭВМ В СИСТЕМАХ АВТОМАТИЗИРОВАННОГО

УПРАВЛЕНИЯ (САУ)                                                                            56

39. СХЕМА СУММИРОВАНИЯ НАПРЯЖЕНИЯ НА АТТЕНЮАТОРЕ

СОПРОТИВЛЕНИЙ                                                                               58

40. ПРИМЕНЕНИЕ МИКРО ЭВМ В ПРИБОРАХ (СПЕКТРОФОТОМЕТР) 58

41. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ (ПО) ЭВМ.                                    60

42. ОПЕРАЦИОННАЯ СИСТЕМА ЭВМ                                                    61

43. МИКРОПРОЦЕССОРНЫЙ КОМПЛЕКТ К 1804.                                  62

44. АССЕМБЛЕР К580                                                                              66


СТРУКТУРНАЯ СХЕМА ЭВМ. ПОКОЛЕНИЯ ЭВМ

 

Создано 4 поколения ЭВМ:

    1. 1946 г. создание машины ЭНИАК на электронных лампах.   Запоминающие устройства (ЗУ) были построены на электронных. лампах,   электронно - лучевых трубках (ЭЛТ) и линиях задержки.

    2. 60-е годы. ЭВМ построены на транзисторах, ЗУ на транзисторах, линиях     задержки и ферритовых сердечниках.

    3. 70-е годы. ЭВМ построены на интегральных микросхемах (ИМС). ЗУ на ИМС.

    4. Начало создаваться с 1971 г. с изобретением микропроцессора (МП).     Построены на основе больших интегральных схем (БИС) и сверх БИС     (СБИС).

    Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом, используется новая технология на основе арсенида галлия.

ЭВМ предназначены для обработки информации и отображения результатов обработки. Для решения задачи должна быть написана программа.

    Во время решения задачи программа и операнды (числа, над которыми производится операции) находятся в оперативной памяти (ОЗУ). Быстродействие ОЗУ соизмеримо с быстродействием АЛУ. В процессе решения задачи АЛУ постоянно взаимодействует с ОЗУ, передавая в ОЗУ промежуточные и конечные результаты и получая из ОЗУ операнды действия всех частей ЭВМ при решении задачи осуществляется под воздействием управляющих сигналов, вырабатываемых устройством управления в соответствии с программой, записанной в ОЗУ.

    ПЗУ предназначено для хранения стандартных программ, таких как sin и cos, констант, е.

    Существует еще сверх ОЗУ (СОЗУ), которое обладает малым объемом и высоким быстродействием. СОЗУ применяется для кратковременного хранения операндов и промежуточных результатов.

    Качество ЭВМ определяется: объемом ОЗУ (т.е. количеством одновременно хранимых в ОЗУ двоичных слов); быстродействием, определяемым количеством операций в сек. После выполнения задачи, программа и результаты через устройство вывода записываются во внешнее ЗУ. В качестве внешних ЗУ используются магнитная лента, гибкий магнитный диск, магнитный барабан, перфолента, перфокарты. Программа вводится в ОЗУ с внешних ЗУ или с клавиатуры через устройство ввода.

СИСТЕМЫ СЧИСЛЕНИЯ.

 

    Основанием системы счисления называют. число, в виде степеней которого может быть записано любое число в данной системе счисления. Системы счисления, применяемые в ЭВМ, ориентированы на двоичную систему, т.к. основой ЭВМ является триггер, имеющий два устойчивых состояния.

    В десятичной системе счисления основанием является. 10 и для записи чисел используют символы 0...9.В двоичной системе основанием является. 2. Для записи чисел используются символы 0 и 1.

    Для перевода числа из десятичной системы в двоичную надо последовательно делить на два и результат записывать справа налево, начиная с последнего частного, включая остатки от деления.


                                                                                Таблица 1

10 2 8 16
0 00 0 0
1 01 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

 

    В восьмеричной системе основанием является. 8. Для записи чисел используют символы 0...7. Любое число может быть записано как сумма степеней 8. Для перевода числа из десятичной системы в восьмеричную надо последовательно делить на 8.

    Для перевода числа из двоичной системы в восьмеричную, нужно отсчитывать справа налево по три разряда двоичного числа и записывать каждую группу из трех разрядов с помощью символов 0...7.

    Основанием в шестнадцатеричной системе является 16, для записи чисел используются символы 0...9 и A...F. Для перевода из десятичной системы в шестнадцатеричную, надо последовательно делить на 16:

    В любой системе счисления ее основание записывается как 10. Для перевода числа из двоичной системы в шестнадцатеричную, нужно отсчитывать справа налево по 4 разряда двоичного числа и записывать каждую группу разрядов с помощью символов из Таблицы 1, в которой представлены соотношения между числами в различных системах счисления.

 

Образование дополнительного кода.

    Дополнительный код образуется из прямого кода инверсией и добавлением единицы к младшему разряду. Если результат получился отрицательным, то чтобы получить прямой код необходимо осуществить инверсию, а затем добавить единицу к младшему разряду. Единица переполнения знакового разряда при использовании дополнительного кода отбрасывается.

УЗЛЫ ЭВМ.

 

    Узлы ЭВМ классифицируются на:

    1. комбинационные - это узлы, выходные сигналы которых определяются только сигналом на входе, действующим в настоящий момент времени (дешифратор). Выходной сигнал дешифратора зависит только от двоичного кода, поданного на вход в настоящий момент времени. Комбинационные узлы называют также автоматами без памяти.

    2. последовательностные (автоматы с памятью) - это узлы, выходной сигнал которых зависит не только от комбинации входных. сигналов, действующих в настоящий момент времени, но и от предыдущего состояния узла (счетчик).

    3. программируемые узлы функционируют в зависимости от того, какая программа в них записана. Например, программируемая логическая матрица (ПЛМ), которая в зависимости от прожженной в ней программы может выполнять функции сумматора, дешифратора, ПЗУ.

СУММАТОР

        

    Сумматор может быть построен как комбинационная схема -

последовательный сумматор и как

последовательностная схема -

накапливающий сумматор. Сумматор осуществляет cуммирование цифр разрядов слагаемых и цифр переноса по правилам сложения по модулю 2. Работа сумматора строго регламентирована в соответствии с таблицей:

 

 

    ai bi Pi Si Pi+1
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

 


ПОСЛЕДОВАТЕЛЬНЫЙ СУММАТОР

    Последовательный сумматор осуществляет суммирование слагаемых и цифр переноса поразрядно, начиная с младшего разряда. Основой его схемы является одноразрядный сумматор. Суммирование производится в одноразрядном сумматоре SM. Цифры i-того разряда слагаемого и цифра переноса из младшего разряда передаются на вход сумматора одновременно с приходом тактового импульса. Регистры 1 и 2 используются для приема и хранения цифр i-того разряда слагаемых. В D - триггере хранится цифра переноса из младшего разряда. Регистр 3 принимает и хранит цифру i-того суммы. С приходом тактового импульса из регистров 1, 2 и D - триггера разряда слагаемых и цифра переноса поступает на вход одноразрядного сумматора. Одновременно регистр 3 освобождается для приема цифры суммы.

 

 

    В параллельном сумматоре все разряды операндов суммируются одновременно, но быстродействие снижается за счет времени передачи цифры переноса из младшего разряда.

 

 

ДЕШИФРАТОР

    Дешифратор предназначен для преобразования двоичного кода на входе в управляющий сигнал на одном из выходов. Если входов n то выходных шин должно быть N = 2^n.

 

X1 X2 X3 Z0 Z1 Z2 Z3 Z4 Z5 Z6 Z7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

    В зависимости от количества разрядов входного числа и от количества входов элементов, на которых построен дешифратор. Дешифраторы могут быть линейные, у которых все переменные Х1, Х2, Х3 подаются на вход одновременно.

    Их быстродействие больше, но более 3-х переменных одновременно подать нельзя, поэтому чаще применяются многокаскадные дешифраторы. Количество элементов в каждом следующем разряде больше, чем в предыдущем.

    На вход первого каскада подается один слог, на вход следующего каскада второй слог и результаты коньюнкций, произведенных в первом каскаде.

    Простейший линейный дешифратор можно построить на диодной матрице:

 


    В этой схеме используется отрицательная логика. При подаче " 1" на анод диода он закрывается. Если закрыты все 3 диода, подсоединенные к одной гориз. линии то на этой линии потенциал -Е, соответствующий уровню " 1".

Многокаскадный дешифратор можно организовать вот таким образом:

 

Два линейных дешифратора обрабатывают по 2 слова. В последнем каскаде образуются конъюнкции вых. сигнала первого каскада. Многокаскадные дешифраторы обладают меньшим быстродействием.

НАКАПЛИВАЮЩИЙ СУММАТОР

    Накапливающий сумматор является автоматом с памятью, т.е. слагаемые могут приходить поочередно в произвольные моменты времени и запоминаться в линиях задержки или в триггерах. Накапливающий. сумматор применяется в асинхронных устройствах, в которых слагаемые не привязаны к тактам тактового генератора.

    С приходом слагаемого аi=1 элемент " ИЛИ" устанавливается в " 1", триггер устанавливается. в " 1". Если bi=1 и приходит через какое-то время после ai, то оно запоминается в линии задержки и

одновременно bi опрокидывает триггер в " 0". На инверсном выходе триггера устанавливается " 1", следовательно на вторую схему " И" подаются две единицы, следовательно на выходе второй схемы " ИЛИ" формируется цифра переноса в старший разряд, равная " 1". Если Pi=0, то цифра суммы, которая снимается с прямого выхода триггера, равна " 0". Если Pi=1, то сумма Si=1.

 

ai bi Pi Si Pi+1
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

 

МИКРО ЭВМ НА БАЗЕ МП К580

    Чтобы построить микроЭВМ надо дополнить МП БИСами памяти, УВВ интерфейса, причем они должны сопрягаться с МП по входным и вых. сигналам, по принятому коду для данного МП. При выполнении программы, программа хранится в ОЗУ. Если набор действий МП при выполнении программы ограничен и однообразен, как например в системах управления станков с ЧПУ, то программа хранится в ПЗУ. Если объем памяти ОЗУ недостаточен, то программа может хранится во внешнем запоминающем устройстве, например в магнитном носителе информации.

    Процесс выполнения программы МП связан с тактами генератора тактовых импульсов (ГТИ). МП работает в синхронном режиме. ГТИ создает две импульсных последовательности Ф1 и Ф2 амплитудой 12 В и частотой 2МГц. В такте t1 импульсной последовательности Ф1 счетчик команд МП посылает через шину адреса номер ячейки ОЗУ, ПЗУ или УВВ, содержащих код команды. В такте t2 МП ждет сигнал " готовности" от ОЗУ. Этот сигнал означает, что дешифратор ОЗУ выбрал нужную ячейку и код команды считан. Если сигнал " готовность" не приходит, то такт t2 повторяется до тех пор, пока сигнал не придет. В такте t3 МП принимает код команды и передает его в АЛУ. В такте t4 код команды анализируется и если ненужно дополнительное обращение к памяти, то в такте t5 команда выполняется. Если такое обращение необходимо, то тактом t4 заканчивается 1-й машинный цикл. Начинается 2-ой машинный цикл тактом t1, в котором происходит обращение к памяти. В такте t2 второго маш. цикла МП ждет сигнала готовности от ОЗУ и в такте t3 выполняет команду. В каждом машинном такте происходит только одно обращение к памяти. Последовательность Ф2 используется для формирования синхроимпульсов на фоне которых формируется строб состояния.


ОРГАНИЗАЦИЯ ПАМЯТИ ЭВМ

 

    Память ЭВМ организована по иерархической лестнице, т.е. устройства обладающие большим объемом памяти обладают меньшим быстродействием. Наибольшим быстродействием обладают СОЗУ (сверх ОЗУ). Они обычно реализуются на регистрах, поэтому в МП СОЗУ называется РОН. Объем памяти СОЗУ очень мал. Обычно памятью машины называют ОЗУ. Быстродействие ОЗУ должно быть не меньше чем быстродействие электронных схем операционной части, памяти должно быть достаточно для записи программы решаемой задачи, а так же исходных данных, промежуточных и конечных результатов. Внешние запоминающие устройства обладают практически неограниченным объемом памяти и наименьшим быстродействием. ОЗУ не сохраняет информацию при отключении питания. Существуют ПЗУ, которые сохраняют информацию при отключении питания. ПЗУ работают только в режиме чтения, а ОЗУ в режиме чтения и записи. Существуют перепрограммируемые ПЗУ (ППЗУ), которые сохраняют информацию при отключении питания и допускают запись информации. При этом время записи во много раз больше времени считывания. Считывание информации из ОЗУ может происходить с разрушением информации или без.

    При разрушении информации при считывании необходимо дополнительное время на восстановление информации. Время считывания состоит из времени поиска адреса, времени собственного считывания и времени регенерации (восстановления) считанной информации. ОЗУ реализуется на микросхемах. Элемент памяти реализован на триггерах. Триггер может быть построен на биполярных и униполярных транзисторах.

 

    По шине адреса (ША) в регистр адреса поступает n - разрядный двоичный код адреса. n1 разряд используется для записи номера строки, а n2 - для записи номера столбца. Дешифраторы строк и столбцов вырабатывают управляющие сигналы на соответствующих выходах. Под действием этих управляющих сигналов происходит выбор адресуемого элемента памяти, если на входе выбора кристалла (ВК) дешифратора строк " 1", то ОЗУ находится в режиме хранения. Если на ВК " 0", то ОЗУ находится или в режиме чтения, или в режиме записи. Нормальным является режим чтения. Информация поступает через усилитель чтения (УЧ) и выходной триггер.

    Режим записи обеспечивается подачей сигнала разрешения записи (РЗ) на усилитель записи (УЗ). Информация через триггер и УЗ подается на информационные цепи 1 и 0. Триггеры реализованы на МДП - транзисторах.

Транзисторы VT2 и VT4 являются нагрузкой триггера. Напряжение затвор - исток этих транзисторов имеет нулевое значение, поэтому они всегда открыты. Триггер реализован на VT1 и VT3. В нем записана " 1", если VT1 закрыт. При совпадении сигналов от дешифратора строк и столбцов триггер готов к записи или считыванию информации. Управляющий сигнал с выхода дешифратора столбцов действует на VT7 и VT8. Управляющий сигнал с выхода дешифратора строк воздействует на VT5 и VT6.

    Запись " 1" производится в том случае, если на информационную цепь (ИЦ) нуля поступает логический " 0". Для записи " 0" логический " 0" подается в ИЦ1.

    В режиме чтения состояние триггера передается через открытые VT5-VT8 в информационные цепи. Если элемент памяти хранит " 1", то уровень " 1" поступает в ИЦ1, а если " 0", то уровень логической " 1" поступает в ИЦ0.

 

Фазовая модуляция.

 

    Метод фазовой модуляции состоит в том, что " 1" и " 0" передаются разной фазой, например " 1" - перепад от минимума к максимуму, а " 0" - наоборот. В устройстве воспроизведения есть специальный блок, анализирующий, какой следующий знак должен быть записан. Если должны быть записаны два одинаковых знака, то в середине такта делается дополнительный перепад с тем, чтобы сначала следующего такта был нужный перепад. Распознование единиц и нулей производится по импульсам вначале такта. Если записана " 1", то в обмотке считывания в начале такта импульс отрицательный. Этот метод является самосинхронизирующимся, т.к. в начале каждого такта есть импульс - положительный или отрицательный. Плотность записи 32 и 63 бит/мм.

Частотная модуляция (ЧМ).

    При ЧМ " 1" передается сигналом с частотой в 2 раза больше, чем при передачи " 0". Этот метод является самосинхронизирующимся, т.к. в начале каждого такта есть импульс. При этом методе обеспечивается высокая плотность записи 63 бит/мм. Распознование " 1" происходит при наличии импульса в середине такта.

 

ВЫВОД ИНФОРМАЦИИ НА ДИСПЛЕЙ

    Дисплей является наиболее удобным устройством общения человека с машиной. Он позволяет набирать информацию на клавиатуре, высвечивать ее на экране, записывать ее в память машины, исправлять введенную информацию. Связь ЭВМ и дисплея осуществляется через блок интерфейса. Информация, набранная на знаковой клавиатуре через блок интерфейса записывается в память ЭВМ. Информация, которая должна быть выведена на экран через блок интерфейса записывается в буферном ЗУ (БЗУ). Объем БЗУ равен количеству знаков, которые могут быть одновременно высвечены на экране. После того, как БЗУ полностью загружено, дисплей переходит в автономный режим работы. Код знака, записанного в БЗУ, является командой, по которой из ПЗУ микропрограмм считывается микропрограмма воспроизведения данного знака. Микрокоманда этой микропрограммы подается на устройство управления лучом, которое преобразует эти микрокоманды в аналоговые сигналы, управляющие отклоняющими системами ЭЛТ. Существуют два способа развертки луча на экране ЭЛТ:

1. функциональный; при этом луч перемещается в пределах одного знакоместа, т.е. прочерчивает знак за знаком

2. растровый; при этом луч двигается по строчкам и высвечивает каждый знак послойно. Количество высвечиваемых знаков может быть от 128 до 4000 и зависит от типа экрана.

    Дисплей позволяет исправлять введенную информацию с помощью маркера и светового пера. Маркер совмещают со знаком, который нужно исправить и на функциональной клавиатуре нажимают кнопку " СТИРАНИЕ". В ячейке БЗУ уничтожается этот знак. Затем набирается нужный и нажимают на кнопку " ВОЗВРАТ".

    Конец светового пера, на котором находится фотодиод, подводится к тому знаку, который нужно уничтожить. По сигналу светового пера устройство управления определяет координаты знака на экране и в БЗУ. По этому адресу информация может быть изменена или уничтожена.

Для получения немерцающего изображения на всех экранах на ЭЛТ блок управления должен обеспечивать скорость воспроизведения 50 символов в сек.

 

ИНТЕРФЕЙС

 

    Устройства вычислительной системы соединяются друг с другом с помощью унифицированных систем связи, называемых интерфейсом. Интерфейс представляет собой систему шин, согласующих устройств, алгоритмов обеспечи-вающих связь всех частей ЭВМ между собой. От характеристик интерфейса зависит быстродействие и надежность ЭВМ. Интерфейс должен быть стандартизирован с тем, чтобы он обеспечивал связь процессора и оперативной памяти с любым периферийным устройством (ПУ). Необходимое преобразование формата данных должно производиться в ПУ. Алгоритмы функционирования интерфейса и управляющего сигнала также должны быть стандартизированы. Схемы интерфейса обычно располагаются в самих связываемых устройствах.

    Типы интерфейса:

1. Интерфейс ОЗУ - через него производится обмен данными между ОЗУ и процессором, между ОЗУ и каналами ввода - вывода. Ведущим в обмене данными, т.е. начинающим операцию обмена, является процессор и каналы ввода - вывода, а исполнителем - ОЗУ. Этот интерфейс является быстродействующим. Информация через него передается словами и полусловами.

2. Интерфейс с процессором - через него происходит обмен информацией между процессором и каналами ввода - вывода. Ведущий - процессор, исполнитель - каналы. Интерфейс является быстродействующим. Обмен информацией через него происходит словами и полусловами.

3. Интерфейс ввода - вывода. Через него происходит обмен информацией между каналами ввода - вывода и устройствами управления ПУ. Обмен информацией производится байтами. Его быстродействие меньше, чем у первых двух типов.

4. Интерфейс периферийных аппаратов (ПА). Через него происходит обмен информацией между устройствами управления ПА и самими ПА. Он не может быть стандартизирован, т.к. ПА очень разнообразны.

    Интерфейсы могут быть односвязными и многосвязными.

    При односвязном интерфейсе общие для всех устройств шины используются всеми устройствами, подключенными к данному интерфейсу, на основе разделения времени.

    При многосвязном интерфейсе одно устройство связывается с другими устройствами по нескольким независимым магистралям.

    Односвязный интерфейс применяется в малых и микро ЭВМ, а многосвязный - в средних и больших ЭВМ. Многосвязный интерфейс характеризуется тем, что каждое устройство снабжается одной выходной магистралью для выдачи информации и несколькими входными для приема информации от других устройств.

    При неисправности какой - либо входной шины или сопряженных с ней согласующих устройств, оказывается отключенным только одно периферийное устройство. Интерфейс автоматически определяет неисправное ПУ и выбирает исправные и незанятые магистрали. МП в зависимости от заданной программы выбирает последовательность опроса датчиков, т.е. вырабатывает управляющие сигналы обмена информацией по выбранному каналу и осуществляет сбор и обработку данных.

    По цифровому каналу связи сигнал может передаваться параллельно или последовательно. Параллельная передача цифрового сигнала требует отдельные линии для каждого разряда, но является более быстродействующей. При последовательной передаче цифровые сигналы передаются последовательно по одной линии связи. По способу передачи информации во времени интерфейс может быть синхронный и асинхронный. Синхронный характерен постоянной временной привязкой, а асинхронный - без постоянной временной привязки. При синхронной передаче данных синхронизирующие сигналы МП задают временной интервал, в течении которого считывается информация с одного датчика. Временной интервал определяется наибольшим временем задержки в системе передачи данных и максимальным временем преобразования аналогового сигнала в цифровой. Асинхронная передача данных характеризуется наличием управляющих сигналов: " Готовность к обмену", вырабатываемый датчиком исходной информации; " Начало обмена", " Конец обмена", " Контроль обмена", вырабатываемые МП. При такой организации обмена автоматически устанавливается рациональное соотношение между скоростью передачи данных и величинами задержки сигналов в канале связи.

 

ИНТЕРФЕЙСА. АЦП

    К специализированным устройствам интерфейса относятся АЦП, ЦАП, преобразователи кодов. Специализированные устройства преобразуют информацию к виду, удобному для восприятия данной машины (это делают АЦП и преобразователи кодов). ЦАП преобразует

информацию к виду, удобному для восприятия периферийным устройством. Преобразование аналоговой информации в цифровую основано на теореме Котельникова: любой аналоговый сигнал может быть записан в дискретной форме и информация не будет потеряна, если шаг квантования t будет выбран из условия:

 

 

, где F max - максимальная частота спектра передаваемого сигнала.

    В данной схеме происходит промежуточное преоб-разование напряжения Uвх в длительность импульса триггера, которая в свою очередь определяет количество импульсов генератора импульсной последовательности (ГИП) со считанных счетчиком. Счетчик выдает результат в двоичном коде, следовательно показания счетчика пропорциональны Uвх. Тактовый импульс запускает генератор линейно изменяющегося напряжения (ГЛИН) и обнуляет счетчик. В двух компараторах К1 и К2 происходит сравнение напряжения ГЛИН с " 0" и с Uвх.

    Когда уровень напряжения ГЛИН равен " 0", то на выходе К1 вырабатывается сигнал, который устанавливает триггер в единичное состояние. На схему " И" подается единичный сигнал с выхода триггера и последовательность импульсов с выхода ГИП. Импульсы ГИП подаются на счетчик, который их считает. Когда напряжение " пилы" станет равным Uвх, сигнал с выхода К2 " опрокинет" триггер в нулевое состояние, импульсы через схему " И" не проходят, счет прекращается. Количество прошедших импульсов пропорционально Uвх. Т.к. напряжение " пилы" строго говоря не является линейным, особенно на начальном участке, то точность преобразования не велика. Большую точность обеспечивают АЦП с ОС и АЦП следящего типа.

АЦП С ОБРАТНОЙ СВЯЗЬЮ (ОС)

 

        

        

    ЦАП вырабатывает напряжение ОС. Это напряжение имеет ступенчатую форму. С приходом тактового импульса счетчик начинает считать от генератора импульсной последовательности (ГИП). Счет прекращается при подаче нулевого сигнала с вых. компаратора. Этот сигнал вырабатывается в том случае, если напряжение ОС больше или равно Uвх. Количество сосчитанных импульсов пропорционально Uвх в двоичном коде.

 

 

АЦП СЛЕДЯЩЕГО ТИПА.

    АЦП с ОС преобразует в двоичный код только возрастающее Uвх. АЦП следящего типа преобразует в цифровой сигнал как возрастающее, так и убывающее напряжение. В этой схеме применяется реверсивный счетчик. Когда на вых. компаратора (К) единичный сигнал (Uвх > Uос) счетчик находится в режиме прямого счета. Когда Uвх Uос, на выходе К - " 0" и счетчик переходит в режим обратного счета.

 

ПРИМЕНЕНИЕ МИКРО ЭВМ В

ПРИБОРАХ (СПЕКТРОФОТОМЕТР)

 

    Спектрофотометр применяется для качественного и количественного анализа состава жидкого и прозрачного твердого образца. Принцип его действия основан на том, что световой луч по разному поглощается веществом, в зависимости от его состава. Следовательно коэффициент поглощения для разных веществ будет различным. Микро ЭВМ выполняет в этом приборе следующие функции: автоматизация процесса измерения; экспресс обработку результатов измерения; повышение точности прибора; облегчает общение оператора с прибором.

    В памяти микро ЭВМ записаны коэффициенты поглощения различных веществ, программа испытаний и программа управления устройством подачи образца (УПО). Монохроматор представляет собой генератор, испускающий световые волны с заданной программой частотой. Светофильтр поглощает все мешающие колебания кроме одного требуемой частоты. Этот луч, проходя через образец, поглощается в зависимости от его состава. Приемник излучения принимает эти колебания, амплитуда которых зависит от коэффициента поглощения и вырабатывает сигнал, пропорциональный изменению амплитуды. Микро - функциональный модуль (МФМ) АЦП преобразует аналоговый сигнал в цифровую форму и передает цифровой сигнал в микро ЭВМ. Микро ЭВМ сравнивает полученные результаты с записанными в памяти и определяет состав вещества. Оператор может набирать программу измерений с помощью клавиатуры и выводить информацию на самописец, табло, на телеграфный аппарат. Блок ручной корректировки позволяет оператору вносить изменения в программу.

 


ОПЕРАЦИОННАЯ СИСТЕМА ЭВМ

 

    Представляет собой программное обеспечение вычислительного процесса. Она управляет вводом - выводом, загрузкой программы данных в память, трансляцией программы и данных в машинные коды, управляет выполнением программ.


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 237; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.132 с.)
Главная | Случайная страница | Обратная связь