Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Собственное время, события и мировые линии частиц



В качестве часов наблюдатели в системах S, S могут использовать любой периодический процесс, например, излучение атомов или молекул на определенных фиксированных частотах. Время, отсчитываемое по часам, движущимся вмемте с данным объектом, называется собственным временем этого объекта. Для измерения длин можно взять некоторый эталон - линейку. Собственной длиной линейки называется ее длина l0 в той системе, в которой она покоится. Величина l0 равна модулю разности координат концов линейки в один и тот же момент времени.

Совокупность декартовых координат = (x, y, z) и момента времени t в некоторой инерциальной системе отсчета определяют событие. Событием является, например, нахождение точечной частицы в момент времени t в точке пространства, указанной вектором .

Множество всех событий образуют " четырехмерный Мир Минковского". Отдельные точки в четырехмерном пространстве указывают координаты и время некоторого " события". Последовательность кинематических состояний любого тела (его координаты в разные моменты времени) изображается мировой линией (Рис. 7).

Рис. 7

Если частицы движутся только вдоль оси 0x, то наглядно представить " Мир Минковского" можно с помощью плоскости координат (с t, x). Время удобно умножить на скорость света, чтобы обе координаты имели одинаковую размерность. Это можно сделать, поскольку скорость света - универсальная мировая константа.

Рис. 8

Мировыми линиями (в отличие от траекторий классической механики) обладают не только движущиеся, но и покоящиеся в данной инерциальной системе отсчета тела. Так, мировая линия тела, покоящегося в начале координат, будет совпадать с временной осью 0 ct, а тела, покоящегося в пространственной точке xa - является прямой AB, параллельной оси времени. Мировая линия тела, движущегося с постоянной скоростью V - (и при t = 0, находящегося в точке x(0) = 0) - прямая CD; мировая линия светового луча, испущенного из начала координат в напралении оси x - биссектриса координатного угла OF; мировая линия тела, движущегося с переменной скоростью v(t) - кривая MN (cм. Рис. 8а))

 

2.6 Геометрический смысл преобразований Лоренца

Выясним теперь геометрический смысл преобразований Лоренца. Еще раз запишем его только для x и t в виде

x =  (x -  ct), ct =  (ct -  x).

 

Это линейное однородное преобразование, очень похожее на преобразование поворота на угол  в плоскости XY:

x = x cos + y sin, y = - x sin +y cos.

 

Новые оси x, y, получающиеся в результате поворота изображены на Рис. 8 б).

Важнейшим свойством преобразования поворота является сохранение расстояния между любыми двумя точками: r12 = r12.

Здесь:

Введем величину, зависящую от параметров двух событий { [(r1)\vec], t1 } и { [(r2)\vec], t2 } и определенную равенством

s12 = [ c2 (t2 - t1)2 - (x2 - x1)2 - (y2 - y1)2- (z2 - z1)2 ]1/2.

 

(15)

Она называется пространственно - временным интервалом.

Прямой подстановкой формул (12) можно проверить, что величина пространственно - временного интервала между двумя событиями является инвариантом преобразований Лоренца:

s12 = s12.

 

(16)

В двумерном случае можно рассматривать как " расстояние" между точками плоскости ct, x. Но квадрат разности координат входит в s12 со знаком " минус". Пространство, в котором расстояние между точками определено формулой (15) называется псевдоевклидовым. Наряду с отмеченным сходством, между евклидовым и псевдоевклидовым пространствами имеются принципиальные различия. В евклидовом пространстве расстояние между любыми точками r212  , равенство нулю означает, что точки совпадают. В псевдоевклидовом пространстве s212 может иметь любой знак, а его обращение в нуль возможно для двух совершенно различных точек пространства - времени.

Найдем положение новых осей (x, ct) на псевдоевклидовой плоскости. Отложим координата x, ct на прямоугольных осях. (Рис. 9). Точка x = 0, сопадающая с началом координат системы S, движется в системе S со скоростью V. Ее мировая линия будет представлять собой ось времени ct системы S. Эта ось будет наклонена к оси ct на угол  = arctg (Vc). Ось x новой системы можно определить условием ct = 0. Но тогда в старой системе координат это будет прямая ct =  x, проходящая через начало координат и составляющая с осью x тот же угол  = arctg (Vc).

Приходим к выводу, что новая система координат косоугольна! Если попытаться найти связь между отрезками x, ct и x, ct, посто проектируя отрезки (так как это делается в эвклидовом случае), то получится неправильный результат. Преобразования Лоренца не только поворачивают оси, но и искажают масштабы координат по осям!

Итак, основной результат состоит в том, что преобразования Лоренца можно интерпретировать, как псевдоевклидово вращение системы координат в пространстве Минковского.

Рис. 9

С помощью Рис. 9 можно дать геометрическую интерпретацию различным следствиям из преобразований Лоренца. Вспомним, например, относительность одновременности. В системе S линии равного времени - прямые параллельные оси 0x. В системе S - это прямые, параллельные 0x, не совпадающие с линиями равного времени в системе S. Поэтому события, одновременные в S, не будут в общем случае одновременными в S. Например, между одновременными в системе S событиями A и B в системе S пройдет промежуток времени  t =  AB c, причем событие B произойдет раньше.

Как ясно из вышеизложенного, на псевдоевклидовой плоскости квадрат интервала s212 может быть как положительным, так и равным нулю и отрицательным.

Если s212  , его называют времениподобным, при s212   - пространственноподобным, при s212 = 0 - светоподобным или нулевым.

Характер интервала тесно связан c причинностью - он определяет возможность причинной связи событий, происходящих в пространственно - временных точках 1 и 2. Если s212  , то из точки 1 можно послать сигнал со скоростью , который вызовет событие 2. В случае s212 = 0 это также возможно, но сигнал должен посылаться с предельной скоростью c. События, разделенные пространственноподобным интервалом, не могут быть причинно обусловлены, т.к. сигналы не могут распространяться со скоростью .

Замедление времени

Рассмотрим часы, покоящиеся в начале координат движущейся системы (x = 0), которые перемещаются относительно лабораторной системы координат со скоростью V, так что их координата x = V t пропорциональна времени, определяемому неподвижными часами. Инвариантность интервала позволяет, тогда, определить показания движущихся часов:

t = t

 

________
 1 - V2/c2

.

 

(17)

Время, измеряемое часами, движущимися относительно лабораторной системы отсчета, замедляется.

Как ни покажется странным, но тот же вывод справедлив относительно замедления темпа хода часов в лабораторной системе координат с точки зрения наблюдателя из движущейся системы отсчета, т.е. " движущиеся" и " покоящиеся" часы взаимно отстают друг от друга.

С последним замечанием тесно связан широко известный парадокс близнецов (см. ниже раздел " Задачи" ).

Замедление хода времени в движущейся системе отсчета было экспериментально подтверждено американскими физиками Б. Росси и Д.Х. Холлом в 1941 году. Они наблюдали увеличение среднего времени жизни мюонов, двигавшихся со скоростью v  c, в 6  8 раз по сравнению с временем жизни неподвижных мюонов.

Особая ценность этого эксперимента состоит в том, что процесс распада мюонов определяется слабым взаимодействием, в то время как СТО была построена для описания систем с электромагнитным взаимодействием.

 

Лоренцево сокращение длины

Стержень, расположенный вдоль оси 0X движущейся системы отсчета и покоящийся в ней, имеет длину l0. Если один из концов стержня (для простоты) сосвпадает с началом координат этой системы, то в момент t = 0 по часам лабораторной системы отсчета координаты концов стержня определяются преобразованием Лоренца:

x1 = 0, x2 = l = l0

 

________
 1 - V2/c2

.

 

(18)

Длина движущегося стержня в лабораторной системе отсчета уменьшается в направлении движения. Это изменение длины называется сокращением Лоренца - Фитцджеральда.

Поскольку поперечные размеры тела не изменяются, то легко видеть, что объем тела также уменьшается:

V = V0

 

________
 1 - V2/c2

.

 

(19)

 


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 220; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь