Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Классификация систем массового обслуживания



При исследовании операций часто приходится сталкиваться с работой систем массового обслуживания. СМО могут быть одноканальными и многоканальными.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий (прихода новой заявки, окончания обслуживания, момента, когда заявка, которой «надоело ждать», покидает очередь).

Предмет теории массового обслуживания — построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками — показателями эффективности СМО, описывающими, с той или другой точки зрения, ее способность справляться с потоком заявок. В качестве таких показателей (в зависимости от обстановки и целей исследования) могут применяться разные величины, например: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди и среднее время ожидания обслуживания; вероятность того, что число заявок в очереди превысит какое-то значение, простои, и т. д.

Математический анализ работы СМО очень упрощается, если процесс этой работы — марковский. Для этого достаточно, чтобы все потоки событий, переводящие систему из состояния в состояние (потоки заявок, «потоки обслуживания»), были простейшими. Если это свойство нарушается, то математическое описание процесса становится гораздо сложнее и довести его до явных, аналитических формул удается лишь в редких случаях. Однако аппарат простейшей, марковской теории массового обслуживания может пригодиться для приближенного описания работы СМО даже в тех ситуациях, когда потоки событий — не простейшие. Во многих случаях для принятия разумного решения по организации работы СМО вовсе и не требуется точного знания всех ее характеристик — зачастую достаточно и приближенного, ориентировочного.

Системы массового обслуживания делятся на типы (или классы) по ряду признаков. Первое деление: СМО с отказами и СМО с очередью. В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует. Примеры СМО с отказами встречаются в телефонии: заявка на разговор, пришедшая в момент, когда все каналы связи заняты, получает отказ и покидает СМО необслуженной. В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной. На практике чаще встречаются (и имеют большее значение) СМО с очередью; недаром теория массового обслуживания имеет второе название: «теория очередей».

СМО с очередью подразделяются на разные виды, в зависимости от того, как организована очередь — ограничена она или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания (так называемые «СМО с нетерпеливыми заявками»). При анализе СМО должна учитываться также и «дисциплина обслуживания» — заявки могут обслуживаться либо в порядке поступления (раньше пришла, раньше обслуживается), либо в случайном порядке. Нередко встречается так называемое обслуживание с приоритетом — некоторые заявки обслуживаются вне очереди. Приоритет может быть как абсолютным — когда заявка с более высоким приоритетом «вытесняет» из-под обслуживания заявку с низшим, так и относительным — когда начатое обслуживание доводится до конца, а заявка с более высоким приоритетом имеет лишь право на лучшее место в очереди.

Существуют СМО с так называемым многофазовым обслуживанием, состоящим из нескольких последовательных этапов или «фаз» (например, покупатель, пришедший в магазин, должен сначала выбрать товар, затем оплатить его в кассе, после чего получить на контроле).

Кроме этих признаков, СМО делятся на два класса: «открытые» и «замкнутые». В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии находится сама СМО (сколько каналов занято). В замкнутой СМО — зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже неисправно и ждет наладки. Это — пример замкнутой СМО.

Рассмотрим вывод упомянутой ранее формулы Литтла, связывающей (для предельного, стационарного режима) среднее число заявок L сист, находящихся в системе массового обслуживания (т. е. обслуживаемых или стоящих в очереди), и среднее время пребывания заявки в системе W сист.

Рассмотрим любую СМО (одноканальную, многоканальную, марковскую, немарковскую, с неограниченной или с ограниченной очередью) и связанные с нею два потока событий: поток заявок, прибывающих в СМО, и поток заявок, покидающих СМО. Если в системе установился предельный, стационарный режим, то среднее число заявок, прибывающих в СМО за единицу времени, равно среднему числу заявок, покидающих ее, так как оба потока имеют одну в ту же интенсивность l .

Обозначим: X(t) —число заявок, прибывших в СМО до момента t, Y(t) — число заявок, покинувших СМО до момента t. И та, и другая функции являются случайными и меняются скачком (увеличиваются на единицу) в моменты приходов заявок ( X(t) ) и уходов заявок ( Y ( t ) ). Для любого момента t их разность Z(t) = X(t) - Y(t) — это число заявок, находящихся в СМО.

Рассмотрим очень большой промежуток времени T и вычислим для него среднее число заявок, находящихся в СМО. Оно будет равно интегралу от функции Z(t) на этом промежутке, деленному на длину интервала T:

 

                                                               (7)

 

Данный интеграл представляет собой площадь фигуры, заключенной между X(t) и Y(t) . Фигура состоит из прямоугольников, каждый из которых имеет высоту, равную единице, и основание, равное времени пребывания в системе соответствующей заявки (первой, второй и т. д.). Обозначим эти времена как t1, t2,... Правда, под конец промежутка Т некоторые прямоугольники войдут в эту фигуру не полностью, а частично, но при достаточно большом Т этим можно пренебречь. Таким образом, можно считать, что

 

,                                                                        (8)

 

где сумма распространяется на все заявки, пришедшие за время Т .

Разделим правую и левую часть (8) на длину интервала Т . Получим, с учетом (7):

 

                                                                       (9)

 

Разделим и умножим правую часть (9) на интенсивность l:

 

                                                                  (10)

 

Величина T l — это среднее число заявок, пришедших за время Т . Если мы разделим сумму всех времен ti на среднее число заявок, то получим среднее время пребывания заявки в системе W сист - Итак,

 

                                                                   (11)

 

Это и есть формула Литтла: для любой СМО, при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания среднее время пребывания заявки в системе равно среднему числу заявок в системе, деленному на интенсивность потока заявок.

Точно таким же образом выводится вторая формула Литтла, связывающая среднее время пребывания заявки в очереди W оч и среднее число заявок в очереди L оч .

 

L оч = l W оч

 

Варианты систем массового обслуживания

 

N-канальная СМО с отказами

A — абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени);

Q — относительная пропускная способность (средняя доля пришедших заявок, обслуживаемых системой);

P отк — вероятность того, что заявка покинет СМО необслуженной;

 — среднее число занятых каналов; ;

 

;     ;

 

 ;                       ;

 

;          

 

Одноканальная СМО с неограниченной очередью

P зан — вероятность того, что канал занят; L об — среднее число заявок под обслуживанием

 

;     ;

 

;

 

;

 

;     ;

 

 ;               L оч ;

W оч

 

Одноканальная СМО с неограниченной очередью, простейшим потоком заявок и произвольным распределением времени обслуживания

На одноканальную СМО поступает простейший поток заявок с интенсивностью l. Время обслуживания имеет произвольное распределение с математическим ожиданием  и коэффициентом вариации n m. n m — отношение среднего квадратического отклонения времени обслуживания к его математическому ожиданию.

Формулы Полячека — Хинчина:

L оч ;        L сист

Далее, согласно формуле Литтла:

W оч ;       W сист

 


Поделиться:



Последнее изменение этой страницы: 2019-10-03; Просмотров: 217; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь